H. Taylor, A. Dosseto, J. Farkas, A. Kingston, A. Lorrey, B. Shen
{"title":"Nuccaleena和Dousanto组埃迪卡拉纪白云岩的锂同位素组成","authors":"H. Taylor, A. Dosseto, J. Farkas, A. Kingston, A. Lorrey, B. Shen","doi":"10.1080/08120099.2023.2242908","DOIUrl":null,"url":null,"abstract":"Abstract The end of the Cryogenian glaciations undoubtedly affected the chemistry of the Neoproterozoic oceans, with potential consequences for the evolution of life; the duration and extent of this influence are poorly constrained. Lithium (Li) isotopes in carbonates can be used to investigate past weathering events and riverine input into the oceans. Here, we report the Li isotope (δ7Li) composition of the Ediacaran cap dolostones (Marinoan) from the Nuccaleena Formation, South Australia and the Doushantuo Formation, South China to investigate changes in weathering during the aftermath of the Marinoan glaciation. The origin of dolomite formation is still hotly debated, and the inability to precipitate dolomite at ambient temperatures (the ‘dolomite problem’) has not yet been resolved. The dominant hypothesis for the presence of marine dolomite is that it is of secondary origin, owing to diagenetic replacement of calcium carbonate, but a second hypothesis is that it forms as a result of primary marine deposition; both are plausible hypotheses. Using carbon isotopes (δ13C) and ratios of manganese and strontium (Mn/Sr), we suggest that diagenesis may not have significantly altered the δ7Li composition of the primary dolomite, but this cannot be discounted without further diagenetic modelling. As a result, we cannot infer the δ7Li composition of the Ediacaran oceans, as further work must be done to address the impact of diagenesis on the δ7Li values. Nevertheless, this dataset contributes to a Li isotope chemostratigraphic record of the Proterozoic, which is a key element to understanding the emergence of complex life. KEY POINTS New lithium isotope data for the Nuccaleena Formation. New lithium isotope data for the Doushantuo Formation. We discuss the role of diagenesis in cap carbonate formation and its influence on reconstructing seawater δ7Li compositions.","PeriodicalId":8601,"journal":{"name":"Australian Journal of Earth Sciences","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium isotope composition of Ediacaran dolostones from the Nuccaleena and Doushantuo formations\",\"authors\":\"H. Taylor, A. Dosseto, J. Farkas, A. Kingston, A. Lorrey, B. Shen\",\"doi\":\"10.1080/08120099.2023.2242908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The end of the Cryogenian glaciations undoubtedly affected the chemistry of the Neoproterozoic oceans, with potential consequences for the evolution of life; the duration and extent of this influence are poorly constrained. Lithium (Li) isotopes in carbonates can be used to investigate past weathering events and riverine input into the oceans. Here, we report the Li isotope (δ7Li) composition of the Ediacaran cap dolostones (Marinoan) from the Nuccaleena Formation, South Australia and the Doushantuo Formation, South China to investigate changes in weathering during the aftermath of the Marinoan glaciation. The origin of dolomite formation is still hotly debated, and the inability to precipitate dolomite at ambient temperatures (the ‘dolomite problem’) has not yet been resolved. The dominant hypothesis for the presence of marine dolomite is that it is of secondary origin, owing to diagenetic replacement of calcium carbonate, but a second hypothesis is that it forms as a result of primary marine deposition; both are plausible hypotheses. Using carbon isotopes (δ13C) and ratios of manganese and strontium (Mn/Sr), we suggest that diagenesis may not have significantly altered the δ7Li composition of the primary dolomite, but this cannot be discounted without further diagenetic modelling. As a result, we cannot infer the δ7Li composition of the Ediacaran oceans, as further work must be done to address the impact of diagenesis on the δ7Li values. Nevertheless, this dataset contributes to a Li isotope chemostratigraphic record of the Proterozoic, which is a key element to understanding the emergence of complex life. KEY POINTS New lithium isotope data for the Nuccaleena Formation. New lithium isotope data for the Doushantuo Formation. We discuss the role of diagenesis in cap carbonate formation and its influence on reconstructing seawater δ7Li compositions.\",\"PeriodicalId\":8601,\"journal\":{\"name\":\"Australian Journal of Earth Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08120099.2023.2242908\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08120099.2023.2242908","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Lithium isotope composition of Ediacaran dolostones from the Nuccaleena and Doushantuo formations
Abstract The end of the Cryogenian glaciations undoubtedly affected the chemistry of the Neoproterozoic oceans, with potential consequences for the evolution of life; the duration and extent of this influence are poorly constrained. Lithium (Li) isotopes in carbonates can be used to investigate past weathering events and riverine input into the oceans. Here, we report the Li isotope (δ7Li) composition of the Ediacaran cap dolostones (Marinoan) from the Nuccaleena Formation, South Australia and the Doushantuo Formation, South China to investigate changes in weathering during the aftermath of the Marinoan glaciation. The origin of dolomite formation is still hotly debated, and the inability to precipitate dolomite at ambient temperatures (the ‘dolomite problem’) has not yet been resolved. The dominant hypothesis for the presence of marine dolomite is that it is of secondary origin, owing to diagenetic replacement of calcium carbonate, but a second hypothesis is that it forms as a result of primary marine deposition; both are plausible hypotheses. Using carbon isotopes (δ13C) and ratios of manganese and strontium (Mn/Sr), we suggest that diagenesis may not have significantly altered the δ7Li composition of the primary dolomite, but this cannot be discounted without further diagenetic modelling. As a result, we cannot infer the δ7Li composition of the Ediacaran oceans, as further work must be done to address the impact of diagenesis on the δ7Li values. Nevertheless, this dataset contributes to a Li isotope chemostratigraphic record of the Proterozoic, which is a key element to understanding the emergence of complex life. KEY POINTS New lithium isotope data for the Nuccaleena Formation. New lithium isotope data for the Doushantuo Formation. We discuss the role of diagenesis in cap carbonate formation and its influence on reconstructing seawater δ7Li compositions.
期刊介绍:
Australian Journal of Earth Sciences publishes peer-reviewed research papers as well as significant review articles of general interest to geoscientists. The Journal covers the whole field of earth science including basin studies, regional geophysical studies and metallogeny. There is usually a thematic issue each year featuring a selection of papers on a particular area of earth science. Shorter papers are encouraged and are given priority in publication. Critical discussion of recently published papers is also encouraged.