城市污水干污泥和木屑颗粒混合物的TG热解和红外光谱法鉴定产生的气体成分

Q3 Earth and Planetary Sciences
G. Stravinskas, A. Šlančiauskas
{"title":"城市污水干污泥和木屑颗粒混合物的TG热解和红外光谱法鉴定产生的气体成分","authors":"G. Stravinskas, A. Šlančiauskas","doi":"10.6001/energetika.v67i1.4534","DOIUrl":null,"url":null,"abstract":"The recent tendency of sewage sludge disposal is targeted towards the gasification for heat generation in small towns far from waste incineration plants. The scope of this article is to present the investigation into the mixture of dried sewage sludge and wood pellets during pyrolysis by thermogravimetry (TG) with evolved gas analysis by TG-coupled Fourier transformation infrared spectroscopy (FTIR) method. The maximum intensity of mass loss of sewage sludge material occurs at 300–310°C temperature and it differs from wood cellulose case of 360°C. The 50:50% mixture of these materials was investigated in more details. Pyrolysis reaction kinetics is described by a variation of three constituent parts from TG data. Prefactor A and activation energy E of the Arrhenius law were found, and reaction order n was determined by the Ozawa method employing Avrami phase change. The maximum of gas evolution is always related to the most intense mass loss, and gas composition correlates with the initial material.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TG pyrolysis of a mixture of dried sludge from urban wastewater and wood pellets and identification of the composition of the resulting gases by infrared spectroscopy\",\"authors\":\"G. Stravinskas, A. Šlančiauskas\",\"doi\":\"10.6001/energetika.v67i1.4534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent tendency of sewage sludge disposal is targeted towards the gasification for heat generation in small towns far from waste incineration plants. The scope of this article is to present the investigation into the mixture of dried sewage sludge and wood pellets during pyrolysis by thermogravimetry (TG) with evolved gas analysis by TG-coupled Fourier transformation infrared spectroscopy (FTIR) method. The maximum intensity of mass loss of sewage sludge material occurs at 300–310°C temperature and it differs from wood cellulose case of 360°C. The 50:50% mixture of these materials was investigated in more details. Pyrolysis reaction kinetics is described by a variation of three constituent parts from TG data. Prefactor A and activation energy E of the Arrhenius law were found, and reaction order n was determined by the Ozawa method employing Avrami phase change. The maximum of gas evolution is always related to the most intense mass loss, and gas composition correlates with the initial material.\",\"PeriodicalId\":35639,\"journal\":{\"name\":\"Energetika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6001/energetika.v67i1.4534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v67i1.4534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在远离垃圾焚烧厂的小城镇,最近污泥处理的趋势是气化供热。本文的研究范围是用热重法(TG)和傅立叶变换红外光谱(FTIR)方法对干燥的污水污泥和木屑颗粒的混合物在热解过程中的分析。污泥材料的最大失重强度发生在300-310℃,不同于木纤维素的360℃。更详细地研究了这些材料的50:50%混合物。热解反应动力学由热重数据中三个组成部分的变化来描述。得到了Arrhenius定律的前因子A和活化能E,并用Avrami相变法确定了反应阶数n。气体析出的最大值往往与最剧烈的质量损失有关,气体成分与初始物质有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TG pyrolysis of a mixture of dried sludge from urban wastewater and wood pellets and identification of the composition of the resulting gases by infrared spectroscopy
The recent tendency of sewage sludge disposal is targeted towards the gasification for heat generation in small towns far from waste incineration plants. The scope of this article is to present the investigation into the mixture of dried sewage sludge and wood pellets during pyrolysis by thermogravimetry (TG) with evolved gas analysis by TG-coupled Fourier transformation infrared spectroscopy (FTIR) method. The maximum intensity of mass loss of sewage sludge material occurs at 300–310°C temperature and it differs from wood cellulose case of 360°C. The 50:50% mixture of these materials was investigated in more details. Pyrolysis reaction kinetics is described by a variation of three constituent parts from TG data. Prefactor A and activation energy E of the Arrhenius law were found, and reaction order n was determined by the Ozawa method employing Avrami phase change. The maximum of gas evolution is always related to the most intense mass loss, and gas composition correlates with the initial material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energetika
Energetika Energy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍: The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimi­zation, target systems, environmental impacts of power engi­neering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metro­logy, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are re­viewed. Information is presented on the defended theses, vari­ous conferences, reviews, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信