{"title":"分形谱测度情况下的拟中心模公式","authors":"D. Voiculescu","doi":"10.4171/jfg/108","DOIUrl":null,"url":null,"abstract":"We prove a general ampliation homogeneity result for the quasicentral modulus of an n-tuple of operators with respect to the (p,1) Lorentz normed ideal. We use this to prove a formula involving Hausdorff measure for the quasicentral modulus of n-tuples of commuting Hermitian operators the spectrum of which is contained in certain Cantor-like self-similar fractals.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The formula for the quasicentral modulus in the case of spectral measures on fractals\",\"authors\":\"D. Voiculescu\",\"doi\":\"10.4171/jfg/108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a general ampliation homogeneity result for the quasicentral modulus of an n-tuple of operators with respect to the (p,1) Lorentz normed ideal. We use this to prove a formula involving Hausdorff measure for the quasicentral modulus of n-tuples of commuting Hermitian operators the spectrum of which is contained in certain Cantor-like self-similar fractals.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/108\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/108","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The formula for the quasicentral modulus in the case of spectral measures on fractals
We prove a general ampliation homogeneity result for the quasicentral modulus of an n-tuple of operators with respect to the (p,1) Lorentz normed ideal. We use this to prove a formula involving Hausdorff measure for the quasicentral modulus of n-tuples of commuting Hermitian operators the spectrum of which is contained in certain Cantor-like self-similar fractals.