阿贝尔变种族中不可能相交问题综述

IF 0.8 4区 数学 Q2 MATHEMATICS
Laura Capuano
{"title":"阿贝尔变种族中不可能相交问题综述","authors":"Laura Capuano","doi":"10.1016/j.exmath.2023.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>This short survey is part of a minicourse I gave during the CMI-HIMR Summer School “Unlikely Intersections in Diophantine Geometry” on the Zilber–Pink conjecture, formulated independently by Zilber (2002), Bombieri, Masser and Zannier (1999) in the case of tori and by Pink (2005) in the more general setting of mixed Shimura varieties. This conjecture, which includes in its general formulation many important results in number theory<span>, has been intensively studied by several mathematicians in the past 20 years. We will mainly focus on these problems in the special setting of semiabelian varieties and families of abelian varieties.</span></p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview on problems of Unlikely Intersections in families of abelian varieties\",\"authors\":\"Laura Capuano\",\"doi\":\"10.1016/j.exmath.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This short survey is part of a minicourse I gave during the CMI-HIMR Summer School “Unlikely Intersections in Diophantine Geometry” on the Zilber–Pink conjecture, formulated independently by Zilber (2002), Bombieri, Masser and Zannier (1999) in the case of tori and by Pink (2005) in the more general setting of mixed Shimura varieties. This conjecture, which includes in its general formulation many important results in number theory<span>, has been intensively studied by several mathematicians in the past 20 years. We will mainly focus on these problems in the special setting of semiabelian varieties and families of abelian varieties.</span></p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086923000397\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000397","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这个简短的调查是我在CMI-HIMR暑期学校上的一门迷你课程的一部分,该课程是关于Zilber - Pink猜想的,Zilber (2002), Bombieri, Masser和Zannier(1999)在tori的情况下独立表述,Pink(2005)在更一般的混合志村变种的情况下独立表述。在过去的20年里,许多数学家对这个猜想进行了深入的研究,它的一般公式中包含了数论中的许多重要结果。我们将主要在半abel品种和abel品种族的特殊背景下讨论这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview on problems of Unlikely Intersections in families of abelian varieties

This short survey is part of a minicourse I gave during the CMI-HIMR Summer School “Unlikely Intersections in Diophantine Geometry” on the Zilber–Pink conjecture, formulated independently by Zilber (2002), Bombieri, Masser and Zannier (1999) in the case of tori and by Pink (2005) in the more general setting of mixed Shimura varieties. This conjecture, which includes in its general formulation many important results in number theory, has been intensively studied by several mathematicians in the past 20 years. We will mainly focus on these problems in the special setting of semiabelian varieties and families of abelian varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信