正交度量空间上的不动点定理

IF 0.7 Q2 MATHEMATICS
Nurcan BİLGİLİ GÜNGÖR
{"title":"正交度量空间上的不动点定理","authors":"Nurcan BİLGİLİ GÜNGÖR","doi":"10.31801/cfsuasmas.970219","DOIUrl":null,"url":null,"abstract":"Orthogonal metric space is a considerable generalization of a usual metric space obtained by establishing a perpendicular relation on a set. Very recently, the notions of orthogonality of the set and orthogonality of the metric space are described and notable fixed point theorems are given in orthogonal metric spaces. Some fixed point theorems for the generalizations of contraction principle via altering distance functions on orthogonal metric spaces are presented and proved in this paper. Furthermore, an example is presented to clarify these theorems.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some fixed point theorems on orthogonal metric spaces via extensions of orthogonal contractions\",\"authors\":\"Nurcan BİLGİLİ GÜNGÖR\",\"doi\":\"10.31801/cfsuasmas.970219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal metric space is a considerable generalization of a usual metric space obtained by establishing a perpendicular relation on a set. Very recently, the notions of orthogonality of the set and orthogonality of the metric space are described and notable fixed point theorems are given in orthogonal metric spaces. Some fixed point theorems for the generalizations of contraction principle via altering distance functions on orthogonal metric spaces are presented and proved in this paper. Furthermore, an example is presented to clarify these theorems.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.970219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.970219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

正交度量空间是通过在集合上建立垂直关系而得到的通常度量空间的一个相当广泛的推广。最近,本文描述了集合的正交性和度量空间的正交性的概念,并给出了正交度量空间中值得注意的不动点定理。本文给出并证明了在正交度量空间上通过改变距离函数推广收缩原理的不动点定理。最后给出了一个例子来说明这些定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some fixed point theorems on orthogonal metric spaces via extensions of orthogonal contractions
Orthogonal metric space is a considerable generalization of a usual metric space obtained by establishing a perpendicular relation on a set. Very recently, the notions of orthogonality of the set and orthogonality of the metric space are described and notable fixed point theorems are given in orthogonal metric spaces. Some fixed point theorems for the generalizations of contraction principle via altering distance functions on orthogonal metric spaces are presented and proved in this paper. Furthermore, an example is presented to clarify these theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信