一类二维随机游动的有限补偿过程

Pub Date : 2023-09-01 DOI:10.1016/j.indag.2023.05.007
Ivo J.B.F. Adan , Ioannis Dimitriou
{"title":"一类二维随机游动的有限补偿过程","authors":"Ivo J.B.F. Adan ,&nbsp;Ioannis Dimitriou","doi":"10.1016/j.indag.2023.05.007","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Motivated by queueing applications, we consider a class of two-dimensional random walks, the invariant measure of which can be written as a </span>linear combination of a finite number of product-form terms. In this work, we investigate under which conditions such an elegant solution can be derived by applying a finite compensation procedure. The conditions are formulated in terms of relations among the </span>transition probabilities in the inner area, the boundaries as well as the origin. A discussion on the importance of these conditions is also given.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite compensation procedure for a class of two-dimensional random walks\",\"authors\":\"Ivo J.B.F. Adan ,&nbsp;Ioannis Dimitriou\",\"doi\":\"10.1016/j.indag.2023.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Motivated by queueing applications, we consider a class of two-dimensional random walks, the invariant measure of which can be written as a </span>linear combination of a finite number of product-form terms. In this work, we investigate under which conditions such an elegant solution can be derived by applying a finite compensation procedure. The conditions are formulated in terms of relations among the </span>transition probabilities in the inner area, the boundaries as well as the origin. A discussion on the importance of these conditions is also given.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在排队应用的激励下,我们考虑了一类二维随机漫步,其不变测度可以写成有限个乘积项的线性组合。在这项工作中,我们研究了在哪些条件下可以通过应用有限补偿程序推导出这样一个优雅的解。根据内部区域的跃迁概率、边界和原点之间的关系来表述这些条件。文中还讨论了这些条件的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A finite compensation procedure for a class of two-dimensional random walks

Motivated by queueing applications, we consider a class of two-dimensional random walks, the invariant measure of which can be written as a linear combination of a finite number of product-form terms. In this work, we investigate under which conditions such an elegant solution can be derived by applying a finite compensation procedure. The conditions are formulated in terms of relations among the transition probabilities in the inner area, the boundaries as well as the origin. A discussion on the importance of these conditions is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信