使用基于cnn的GRAINet模型自动映射无人机图像的平均粒径特征

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
T. Lendzioch, J. Langhammer, Veethahavya Kootanoor Sheshadrivasan
{"title":"使用基于cnn的GRAINet模型自动映射无人机图像的平均粒径特征","authors":"T. Lendzioch, J. Langhammer, Veethahavya Kootanoor Sheshadrivasan","doi":"10.2166/hydro.2023.079","DOIUrl":null,"url":null,"abstract":"\n \n This study uses the GRAINet convolutional neural networks (CNN) approach on unmanned aerial vehicles (UAVs) optical aerial imagery to analyze and predict grain size characteristics, specifically mean diameter (dm), along a gravel river point bar in Šumava National Park, Czechia. By employing a digital line sampling technique and manual annotations as ground truth, GRAINet offers an innovative solution for particle size analysis. Eight UAV overflights were conducted between 2014 and 2022 to monitor changes in grain size dm across the river point bar. The resulting dm prediction maps showed reasonably accurate results, with mean absolute error (MAE) values ranging from 1.9 to 4.4 cm in 10-fold cross-validations. Mean squared error (MSE) and root-mean-square error (RMSE) values varied from 7.13 to 27.24 cm and 2.49 to 4.07 cm, respectively. Most models underestimated grain size, with around 68.5% falling within 1σ and 90.75% falling within 2σ of the predicted GRAINet mean dm. However, deviations from actual grain sizes were observed, particularly for grains smaller than 5 cm. The study highlights the importance of a large manually labeled training dataset for the GRAINet approach, eliminating the need for user-parameter tuning and improving its suitability for large-scale applications.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated mapping of the mean particle diameter characteristics from UAV-imagery using the CNN-based GRAINet model\",\"authors\":\"T. Lendzioch, J. Langhammer, Veethahavya Kootanoor Sheshadrivasan\",\"doi\":\"10.2166/hydro.2023.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study uses the GRAINet convolutional neural networks (CNN) approach on unmanned aerial vehicles (UAVs) optical aerial imagery to analyze and predict grain size characteristics, specifically mean diameter (dm), along a gravel river point bar in Šumava National Park, Czechia. By employing a digital line sampling technique and manual annotations as ground truth, GRAINet offers an innovative solution for particle size analysis. Eight UAV overflights were conducted between 2014 and 2022 to monitor changes in grain size dm across the river point bar. The resulting dm prediction maps showed reasonably accurate results, with mean absolute error (MAE) values ranging from 1.9 to 4.4 cm in 10-fold cross-validations. Mean squared error (MSE) and root-mean-square error (RMSE) values varied from 7.13 to 27.24 cm and 2.49 to 4.07 cm, respectively. Most models underestimated grain size, with around 68.5% falling within 1σ and 90.75% falling within 2σ of the predicted GRAINet mean dm. However, deviations from actual grain sizes were observed, particularly for grains smaller than 5 cm. The study highlights the importance of a large manually labeled training dataset for the GRAINet approach, eliminating the need for user-parameter tuning and improving its suitability for large-scale applications.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本研究在无人机光学航空图像上使用GRAINet卷积神经网络(CNN)方法来分析和预测捷克Šumava国家公园砾石河点坝沿线的粒度特征,特别是平均直径(dm)。通过采用数字线采样技术和手动注释作为基本事实,GRAINet为粒度分析提供了一种创新的解决方案。2014年至2022年间,共进行了八次无人机飞越,以监测河流点坝上粒度dm的变化。所得到的dm预测图显示了相当准确的结果,在10倍交叉验证中,平均绝对误差(MAE)值在1.9到4.4厘米之间。均方误差(MSE)和均方根误差(RMSE)值分别为7.13至27.24厘米和2.49至4.07厘米。大多数模型低估了晶粒度,约68.5%的模型在预测的GRAINet平均dm的1σ范围内,90.75%的模型在2σ范围内。然而,观察到与实际晶粒度的偏差,特别是对于小于5cm的晶粒。该研究强调了大型手动标记训练数据集对GRAINet方法的重要性,消除了对用户参数调整的需要,并提高了其对大规模应用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated mapping of the mean particle diameter characteristics from UAV-imagery using the CNN-based GRAINet model
This study uses the GRAINet convolutional neural networks (CNN) approach on unmanned aerial vehicles (UAVs) optical aerial imagery to analyze and predict grain size characteristics, specifically mean diameter (dm), along a gravel river point bar in Šumava National Park, Czechia. By employing a digital line sampling technique and manual annotations as ground truth, GRAINet offers an innovative solution for particle size analysis. Eight UAV overflights were conducted between 2014 and 2022 to monitor changes in grain size dm across the river point bar. The resulting dm prediction maps showed reasonably accurate results, with mean absolute error (MAE) values ranging from 1.9 to 4.4 cm in 10-fold cross-validations. Mean squared error (MSE) and root-mean-square error (RMSE) values varied from 7.13 to 27.24 cm and 2.49 to 4.07 cm, respectively. Most models underestimated grain size, with around 68.5% falling within 1σ and 90.75% falling within 2σ of the predicted GRAINet mean dm. However, deviations from actual grain sizes were observed, particularly for grains smaller than 5 cm. The study highlights the importance of a large manually labeled training dataset for the GRAINet approach, eliminating the need for user-parameter tuning and improving its suitability for large-scale applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信