Abhinav Vishwakarma, Markus Fritscher, Amelie Hagelauer, M. Reichenbach
{"title":"用于可编程非均匀采样ADC的基于RRAM的构建块","authors":"Abhinav Vishwakarma, Markus Fritscher, Amelie Hagelauer, M. Reichenbach","doi":"10.1515/itit-2023-0021","DOIUrl":null,"url":null,"abstract":"Abstract RRAM devices have recently seen wide-spread adoption into applications such as neural networks and storage elements since their inherent non-volatility and multi-bit-capability renders them a possible candidate for mitigating the von-Neumann bottleneck. Researchers often face difficulties when developing edge devices, since dealing with sensors detecting parameters such as humidity or temperature often requires large and power-consuming ADCs. We propose a possible mitigation, namely using a RRAM device in combination with a comparator circuit to form a basic block for threshold detection. This can be expanded towards programmable non-uniform sampling ADCs, significantly reducing both area and power consumption since significantly smaller bit-resolutions are required. We demonstrate how a comparator circuit designed in 130 nm technology can be reprogrammed by programming the incorporated RRAM device. Our proposed building block consumes 83 µW.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An RRAM-based building block for reprogrammable non-uniform sampling ADCs\",\"authors\":\"Abhinav Vishwakarma, Markus Fritscher, Amelie Hagelauer, M. Reichenbach\",\"doi\":\"10.1515/itit-2023-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract RRAM devices have recently seen wide-spread adoption into applications such as neural networks and storage elements since their inherent non-volatility and multi-bit-capability renders them a possible candidate for mitigating the von-Neumann bottleneck. Researchers often face difficulties when developing edge devices, since dealing with sensors detecting parameters such as humidity or temperature often requires large and power-consuming ADCs. We propose a possible mitigation, namely using a RRAM device in combination with a comparator circuit to form a basic block for threshold detection. This can be expanded towards programmable non-uniform sampling ADCs, significantly reducing both area and power consumption since significantly smaller bit-resolutions are required. We demonstrate how a comparator circuit designed in 130 nm technology can be reprogrammed by programming the incorporated RRAM device. Our proposed building block consumes 83 µW.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2023-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An RRAM-based building block for reprogrammable non-uniform sampling ADCs
Abstract RRAM devices have recently seen wide-spread adoption into applications such as neural networks and storage elements since their inherent non-volatility and multi-bit-capability renders them a possible candidate for mitigating the von-Neumann bottleneck. Researchers often face difficulties when developing edge devices, since dealing with sensors detecting parameters such as humidity or temperature often requires large and power-consuming ADCs. We propose a possible mitigation, namely using a RRAM device in combination with a comparator circuit to form a basic block for threshold detection. This can be expanded towards programmable non-uniform sampling ADCs, significantly reducing both area and power consumption since significantly smaller bit-resolutions are required. We demonstrate how a comparator circuit designed in 130 nm technology can be reprogrammed by programming the incorporated RRAM device. Our proposed building block consumes 83 µW.