{"title":"关于紧凸调和映射的一个子类","authors":"Manivannan Mathi, J. K. Prajapat","doi":"10.1142/s1793557121501023","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1793557121501023","citationCount":"1","resultStr":"{\"title\":\"On a subclass of close-to-convex harmonic mappings\",\"authors\":\"Manivannan Mathi, J. K. Prajapat\",\"doi\":\"10.1142/s1793557121501023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s1793557121501023\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793557121501023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557121501023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a subclass of close-to-convex harmonic mappings
In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.