关于紧凸调和映射的一个子类

Manivannan Mathi, J. K. Prajapat
{"title":"关于紧凸调和映射的一个子类","authors":"Manivannan Mathi, J. K. Prajapat","doi":"10.1142/s1793557121501023","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1793557121501023","citationCount":"1","resultStr":"{\"title\":\"On a subclass of close-to-convex harmonic mappings\",\"authors\":\"Manivannan Mathi, J. K. Prajapat\",\"doi\":\"10.1142/s1793557121501023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s1793557121501023\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793557121501023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557121501023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们在开单位圆盘中引入了一类新的保感调和映射[公式:见正文],并证明了这类函数是接近凸的。我们给出了一些基本性质,如系数界、增长估计、卷积,并确定了属于该族的函数截面的凸性半径。此外,我们构造了属于这个族的某些调和单价多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a subclass of close-to-convex harmonic mappings
In this paper, we introduce a new class of sense preserving harmonic mappings [Formula: see text] in the open unit disk and prove that functions in this class are close-to-convex. We give some basic properties such as coefficient bounds, growth estimates, convolution and determine the radius of convexity for the sections of functions belonging to this family. In addition, we construct certain harmonic univalent polynomials belonging to this family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信