{"title":"诊断放射学中使用低剂量铯-137源校准MTS-N(LiF:Mg,Ti)芯片用于人员剂量测定","authors":"A. Omojola, M. Akpochafor, S. Adeneye, M. Aweda","doi":"10.4103/rpe.rpe_6_20","DOIUrl":null,"url":null,"abstract":"Thermoluminescent dosimeter (TLD) is still in use for many applications such as radiation protection, medical dosimetry, environmental research, and personnel dosimetry, with the overall aim of estimating radiation dose within a given medium or material. The aim of this study was to determine the coefficient of variation (CV) for thermoluminescent (TL) element within the same bar-coded slide and to establish calibration factors (CFs) at dose equivalent of 0.07 mm depth in tissue (Hp [0.07]) and dose equivalent of 10 mm depth in tissue (Hp [10]) for newly purchased TL elements alongside a new RadPro TLD manual reader and annealing oven. Annealed TL elements were taken to a Secondary Standard Dosimetry Laboratory (SSDL) for irradiation using a cesium-137 source at known doses (0.2–2 mGy). A RadPro Cube 400 manual TLD Reader was used to determine corresponding TL signal. The CV between two identical TL element within a bar-coded slide for (Hp [10]) and (Hp [0.07]) was determined and a graph of dose (mGy) against TL signal (Coulomb) was plotted to determine the elements CF. CVs from the raw data for 40 TL elements for Hp (10) and Hp (0.07) were 14.6% and 15.02%, respectively. Further selection of sensitive TL elements reduced the CVs of Hp (10) and Hp (0.07) to 3.73% and 3.21%, respectively, which was seen to be within ±10% accepted limit. The maximum percentage deviation for the calculated and actual dose for Hp (10) and Hp (0.07) was 16.7% and 14.3%, respectively. The CFs were power of 10 − 6 and the Coefficient of determination (R2) for Hp (10) and Hp (0.07) was 0.9998 and 0.9981, respectively, after adjustments were made on the initial graphs. Although large deviations were observed at low doses from the results of the raw data. Re-selected “golden Chips” had R2 close to unity and CV was within recommended standards.","PeriodicalId":32488,"journal":{"name":"Radiation Protection and Environment","volume":"43 1","pages":"108 - 114"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Calibration of MTS-N (LiF: Mg, Ti) chips using cesium-137 source at low doses for personnel dosimetry in diagnostic radiology\",\"authors\":\"A. Omojola, M. Akpochafor, S. Adeneye, M. Aweda\",\"doi\":\"10.4103/rpe.rpe_6_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoluminescent dosimeter (TLD) is still in use for many applications such as radiation protection, medical dosimetry, environmental research, and personnel dosimetry, with the overall aim of estimating radiation dose within a given medium or material. The aim of this study was to determine the coefficient of variation (CV) for thermoluminescent (TL) element within the same bar-coded slide and to establish calibration factors (CFs) at dose equivalent of 0.07 mm depth in tissue (Hp [0.07]) and dose equivalent of 10 mm depth in tissue (Hp [10]) for newly purchased TL elements alongside a new RadPro TLD manual reader and annealing oven. Annealed TL elements were taken to a Secondary Standard Dosimetry Laboratory (SSDL) for irradiation using a cesium-137 source at known doses (0.2–2 mGy). A RadPro Cube 400 manual TLD Reader was used to determine corresponding TL signal. The CV between two identical TL element within a bar-coded slide for (Hp [10]) and (Hp [0.07]) was determined and a graph of dose (mGy) against TL signal (Coulomb) was plotted to determine the elements CF. CVs from the raw data for 40 TL elements for Hp (10) and Hp (0.07) were 14.6% and 15.02%, respectively. Further selection of sensitive TL elements reduced the CVs of Hp (10) and Hp (0.07) to 3.73% and 3.21%, respectively, which was seen to be within ±10% accepted limit. The maximum percentage deviation for the calculated and actual dose for Hp (10) and Hp (0.07) was 16.7% and 14.3%, respectively. The CFs were power of 10 − 6 and the Coefficient of determination (R2) for Hp (10) and Hp (0.07) was 0.9998 and 0.9981, respectively, after adjustments were made on the initial graphs. Although large deviations were observed at low doses from the results of the raw data. Re-selected “golden Chips” had R2 close to unity and CV was within recommended standards.\",\"PeriodicalId\":32488,\"journal\":{\"name\":\"Radiation Protection and Environment\",\"volume\":\"43 1\",\"pages\":\"108 - 114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Protection and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/rpe.rpe_6_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Protection and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/rpe.rpe_6_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calibration of MTS-N (LiF: Mg, Ti) chips using cesium-137 source at low doses for personnel dosimetry in diagnostic radiology
Thermoluminescent dosimeter (TLD) is still in use for many applications such as radiation protection, medical dosimetry, environmental research, and personnel dosimetry, with the overall aim of estimating radiation dose within a given medium or material. The aim of this study was to determine the coefficient of variation (CV) for thermoluminescent (TL) element within the same bar-coded slide and to establish calibration factors (CFs) at dose equivalent of 0.07 mm depth in tissue (Hp [0.07]) and dose equivalent of 10 mm depth in tissue (Hp [10]) for newly purchased TL elements alongside a new RadPro TLD manual reader and annealing oven. Annealed TL elements were taken to a Secondary Standard Dosimetry Laboratory (SSDL) for irradiation using a cesium-137 source at known doses (0.2–2 mGy). A RadPro Cube 400 manual TLD Reader was used to determine corresponding TL signal. The CV between two identical TL element within a bar-coded slide for (Hp [10]) and (Hp [0.07]) was determined and a graph of dose (mGy) against TL signal (Coulomb) was plotted to determine the elements CF. CVs from the raw data for 40 TL elements for Hp (10) and Hp (0.07) were 14.6% and 15.02%, respectively. Further selection of sensitive TL elements reduced the CVs of Hp (10) and Hp (0.07) to 3.73% and 3.21%, respectively, which was seen to be within ±10% accepted limit. The maximum percentage deviation for the calculated and actual dose for Hp (10) and Hp (0.07) was 16.7% and 14.3%, respectively. The CFs were power of 10 − 6 and the Coefficient of determination (R2) for Hp (10) and Hp (0.07) was 0.9998 and 0.9981, respectively, after adjustments were made on the initial graphs. Although large deviations were observed at low doses from the results of the raw data. Re-selected “golden Chips” had R2 close to unity and CV was within recommended standards.