Schwartz调和分布的连续小波变换

IF 0.1 Q4 MATHEMATICS
J. Pandey, S. K. Upadhyay
{"title":"Schwartz调和分布的连续小波变换","authors":"J. Pandey, S. K. Upadhyay","doi":"10.1080/25742558.2019.1623647","DOIUrl":null,"url":null,"abstract":"Abstract The continuous wavelet transform of Schwartz tempered distributions is investigated and derive the corresponding wavelet inversion formula (valid modulo a constant-tempered distribution) interpreting convergence in . But uniqueness theorem for the present wavelet inversion formula is valid for the space obtained by filtering (deleting) (i) all non-zero constant distributions from the space , (ii) all non-zero constants that appear with a distribution as a union. As an example, in considering the distribution we would omit 1 and retain only . The wavelet kernel under consideration for determining the wavelet transform are those wavelets whose all the moments are non-zero. As an example, is such a wavelet. is an arbitrary constant. There exist many other classes of such wavelets. In our analysis, we do not use a wavelet kernel having any of its moments zero.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2019.1623647","citationCount":"2","resultStr":"{\"title\":\"Continuous wavelet transform of Schwartz tempered distributions\",\"authors\":\"J. Pandey, S. K. Upadhyay\",\"doi\":\"10.1080/25742558.2019.1623647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The continuous wavelet transform of Schwartz tempered distributions is investigated and derive the corresponding wavelet inversion formula (valid modulo a constant-tempered distribution) interpreting convergence in . But uniqueness theorem for the present wavelet inversion formula is valid for the space obtained by filtering (deleting) (i) all non-zero constant distributions from the space , (ii) all non-zero constants that appear with a distribution as a union. As an example, in considering the distribution we would omit 1 and retain only . The wavelet kernel under consideration for determining the wavelet transform are those wavelets whose all the moments are non-zero. As an example, is such a wavelet. is an arbitrary constant. There exist many other classes of such wavelets. In our analysis, we do not use a wavelet kernel having any of its moments zero.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2019.1623647\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2019.1623647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2019.1623647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了Schwartz调和分布的连续小波变换,并导出了相应的小波逆变换公式(常调和分布的有效模)。但是,本小波反演公式的唯一性定理对于通过从空间中过滤(删除)(i)所有非零常数分布,(ii)所有以分布为并集出现的非零常数而获得的空间是有效的。例如,在考虑分布时,我们将省略1,只保留1。确定小波变换所考虑的小波核是那些所有矩都为非零的小波。举个例子,就是这样一个小波。是一个任意常数。存在许多其他类别的此类小波。在我们的分析中,我们不使用任何矩为零的小波核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous wavelet transform of Schwartz tempered distributions
Abstract The continuous wavelet transform of Schwartz tempered distributions is investigated and derive the corresponding wavelet inversion formula (valid modulo a constant-tempered distribution) interpreting convergence in . But uniqueness theorem for the present wavelet inversion formula is valid for the space obtained by filtering (deleting) (i) all non-zero constant distributions from the space , (ii) all non-zero constants that appear with a distribution as a union. As an example, in considering the distribution we would omit 1 and retain only . The wavelet kernel under consideration for determining the wavelet transform are those wavelets whose all the moments are non-zero. As an example, is such a wavelet. is an arbitrary constant. There exist many other classes of such wavelets. In our analysis, we do not use a wavelet kernel having any of its moments zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信