David L. Tran, P. Shirazi, M. Panduranga, G. Carman
{"title":"光学悬臂位移法测量纳米薄膜磁致伸缩的成本效益","authors":"David L. Tran, P. Shirazi, M. Panduranga, G. Carman","doi":"10.1119/5.0134187","DOIUrl":null,"url":null,"abstract":"A cost-effective method for the quantitative characterization of the magnetostrictive effect in thin films is presented. In this method, a sample's magnetostriction is extrapolated from the tip displacement of a thin-film magnetostrictive cantilever. The tip displacement is measured by monitoring the position of a reflected laser beam using two differentially coupled photodiode positioning sensors. In contrast with alternative optical deflection-angle devices designed for educational purposes, the detection limit of our setup resolves submicron-level displacements from nanoscale thin films. The efficacy of the system is demonstrated through measurements using amorphous 200-nm thick Terfenol-D/Si (100) bimorph cantilevers. In these measurements, magnetostriction values of 106 ± 3.5 ppm at ±4300 Oe applied field were attained, where the voltage noise floor was ±0.05 V (a cantilever displacement uncertainty of ±70 nm). In-plane (IP) and out-of-plane (OOP) magnetization curves and crystallographic x-ray diffraction (XRD) were performed to determine the magnetic behavior and confirm the amorphous nature of the films, respectively. The experimental methods and material characterization systems demonstrated here enhance the understanding of complex magnetic phenomena and introduce common measurement techniques to better equip students with the skills for insightful analysis of fundamental magnetic physics.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost-effective measurement of magnetostriction in nanoscale thin films through an optical cantilever displacement method\",\"authors\":\"David L. Tran, P. Shirazi, M. Panduranga, G. Carman\",\"doi\":\"10.1119/5.0134187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cost-effective method for the quantitative characterization of the magnetostrictive effect in thin films is presented. In this method, a sample's magnetostriction is extrapolated from the tip displacement of a thin-film magnetostrictive cantilever. The tip displacement is measured by monitoring the position of a reflected laser beam using two differentially coupled photodiode positioning sensors. In contrast with alternative optical deflection-angle devices designed for educational purposes, the detection limit of our setup resolves submicron-level displacements from nanoscale thin films. The efficacy of the system is demonstrated through measurements using amorphous 200-nm thick Terfenol-D/Si (100) bimorph cantilevers. In these measurements, magnetostriction values of 106 ± 3.5 ppm at ±4300 Oe applied field were attained, where the voltage noise floor was ±0.05 V (a cantilever displacement uncertainty of ±70 nm). In-plane (IP) and out-of-plane (OOP) magnetization curves and crystallographic x-ray diffraction (XRD) were performed to determine the magnetic behavior and confirm the amorphous nature of the films, respectively. The experimental methods and material characterization systems demonstrated here enhance the understanding of complex magnetic phenomena and introduce common measurement techniques to better equip students with the skills for insightful analysis of fundamental magnetic physics.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0134187\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0134187","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Cost-effective measurement of magnetostriction in nanoscale thin films through an optical cantilever displacement method
A cost-effective method for the quantitative characterization of the magnetostrictive effect in thin films is presented. In this method, a sample's magnetostriction is extrapolated from the tip displacement of a thin-film magnetostrictive cantilever. The tip displacement is measured by monitoring the position of a reflected laser beam using two differentially coupled photodiode positioning sensors. In contrast with alternative optical deflection-angle devices designed for educational purposes, the detection limit of our setup resolves submicron-level displacements from nanoscale thin films. The efficacy of the system is demonstrated through measurements using amorphous 200-nm thick Terfenol-D/Si (100) bimorph cantilevers. In these measurements, magnetostriction values of 106 ± 3.5 ppm at ±4300 Oe applied field were attained, where the voltage noise floor was ±0.05 V (a cantilever displacement uncertainty of ±70 nm). In-plane (IP) and out-of-plane (OOP) magnetization curves and crystallographic x-ray diffraction (XRD) were performed to determine the magnetic behavior and confirm the amorphous nature of the films, respectively. The experimental methods and material characterization systems demonstrated here enhance the understanding of complex magnetic phenomena and introduce common measurement techniques to better equip students with the skills for insightful analysis of fundamental magnetic physics.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.