纳米TiO2-环氧聚合物复合材料的热力学性能研究

Q3 Engineering
J. Sagar, G. Madhu, J. Koteswararao, P. Dixit
{"title":"纳米TiO2-环氧聚合物复合材料的热力学性能研究","authors":"J. Sagar, G. Madhu, J. Koteswararao, P. Dixit","doi":"10.21924/cst.7.1.2022.667","DOIUrl":null,"url":null,"abstract":"The present study purposely is to study the properties of TiO2-epoxy composites. TiO2 was synthesized using the peptization and hydrolysis method and the synthesized powder is in anatase form. The present work aimed to develop the low TiO2 filler epoxy composites for the improved thermal and mechanical properties. The synthesized TiO2 was used as a filler along with epoxy composite and the epoxy - TiO2 nanocomposites were fabricated using the low filler concentration of 0.5, 1.0, 1.5, 2.0, and 2.5% by weight. The glass transition temperature (Tg), regardless of the nanoparticles, was almost the same at 71.23oC. Tensile strength was maximum at 0.5%wt.; further increase in filler loading resulted in a linear reduction of tensile strength. Tensile modulus increased linearly and was found to be maximum at 2.5wt%. Meanwhile, compressive strength was maximum at 0.5%, and compressive modulus increased with filler increase. The present work mainly aimed to develop low filler concentrations.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Studies on thermal and mechanical behavior of nano TiO2 - epoxy polymer composite\",\"authors\":\"J. Sagar, G. Madhu, J. Koteswararao, P. Dixit\",\"doi\":\"10.21924/cst.7.1.2022.667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study purposely is to study the properties of TiO2-epoxy composites. TiO2 was synthesized using the peptization and hydrolysis method and the synthesized powder is in anatase form. The present work aimed to develop the low TiO2 filler epoxy composites for the improved thermal and mechanical properties. The synthesized TiO2 was used as a filler along with epoxy composite and the epoxy - TiO2 nanocomposites were fabricated using the low filler concentration of 0.5, 1.0, 1.5, 2.0, and 2.5% by weight. The glass transition temperature (Tg), regardless of the nanoparticles, was almost the same at 71.23oC. Tensile strength was maximum at 0.5%wt.; further increase in filler loading resulted in a linear reduction of tensile strength. Tensile modulus increased linearly and was found to be maximum at 2.5wt%. Meanwhile, compressive strength was maximum at 0.5%, and compressive modulus increased with filler increase. The present work mainly aimed to develop low filler concentrations.\",\"PeriodicalId\":36437,\"journal\":{\"name\":\"Communications in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21924/cst.7.1.2022.667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.7.1.2022.667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在研究TiO2环氧树脂复合材料的性能。采用胶溶和水解法合成了TiO2,合成的粉末呈锐钛矿状。本工作旨在开发低TiO2填充环氧树脂复合材料,以改善其热性能和力学性能。将合成的TiO2与环氧树脂复合材料一起用作填料,并使用0.5、1.0、1.5、2.0和2.5重量%的低填料浓度制备环氧-TiO2纳米复合材料。无论纳米颗粒如何,玻璃化转变温度(Tg)在71.23℃时几乎相同。拉伸强度在0.5%重量时最大。;填料负载的进一步增加导致拉伸强度的线性降低。拉伸模量呈线性增加,在2.5wt%时最大。同时,抗压强度在0.5%时最大,压缩模量随着填料的增加而增加。目前的工作主要旨在开发低填料浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies on thermal and mechanical behavior of nano TiO2 - epoxy polymer composite
The present study purposely is to study the properties of TiO2-epoxy composites. TiO2 was synthesized using the peptization and hydrolysis method and the synthesized powder is in anatase form. The present work aimed to develop the low TiO2 filler epoxy composites for the improved thermal and mechanical properties. The synthesized TiO2 was used as a filler along with epoxy composite and the epoxy - TiO2 nanocomposites were fabricated using the low filler concentration of 0.5, 1.0, 1.5, 2.0, and 2.5% by weight. The glass transition temperature (Tg), regardless of the nanoparticles, was almost the same at 71.23oC. Tensile strength was maximum at 0.5%wt.; further increase in filler loading resulted in a linear reduction of tensile strength. Tensile modulus increased linearly and was found to be maximum at 2.5wt%. Meanwhile, compressive strength was maximum at 0.5%, and compressive modulus increased with filler increase. The present work mainly aimed to develop low filler concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信