{"title":"对称平移曲面Veech–McMullen族上的Kontsevich–Zorich共循环","authors":"A. Avila, C. Matheus, J. Yoccoz","doi":"10.3934/JMD.2019002","DOIUrl":null,"url":null,"abstract":"We describe the Kontsevich--Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich--Zorich monodromies of $SU(p,q)$ type are realized by appropriate covering constructions.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces\",\"authors\":\"A. Avila, C. Matheus, J. Yoccoz\",\"doi\":\"10.3934/JMD.2019002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the Kontsevich--Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich--Zorich monodromies of $SU(p,q)$ type are realized by appropriate covering constructions.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JMD.2019002\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2019002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces
We describe the Kontsevich--Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich--Zorich monodromies of $SU(p,q)$ type are realized by appropriate covering constructions.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.