Sergio Galan, P. Reviriego, Stefan Walzer, A. Sánchez-Macián, Shanshan Liu, Fabrizio Lombardi
{"title":"黑盒攻击下Bloom滤波器计数的保密性","authors":"Sergio Galan, P. Reviriego, Stefan Walzer, A. Sánchez-Macián, Shanshan Liu, Fabrizio Lombardi","doi":"10.1109/TDSC.2022.3217115","DOIUrl":null,"url":null,"abstract":"Counting Bloom Filters (CBFs) are approximate membership checking data structures, and it is normally believed that at most an approximate reconstruction of the underlying set can be derived when interacting with a CBF. This paper decisively refutes this assumption. In a recent paper, we considered the privacy of CBFs when the attacker has access to the implementation details and thus, it sees the filter as a white-box. In that setting, we showed that the attacker may be able to extract the elements stored in the filter when the number of false positives over the entire universe is not significantly larger than the number of elements stored in the filter. In this work, we consider a black-box attacker that can only perform user interactions on the CBF to insert, remove and query elements with no knowledge of the filter implementation details. We show that even in this case, an attacker may be able to extract information from the filter at the cost of using more complex and time-consuming attack algorithms. The proposed algorithms have been implemented and compared with the white-box attack, showing that in most cases, almost the same information can be extracted from the filter.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4434-4440"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Privacy of Counting Bloom Filters Under a Black-Box Attacker\",\"authors\":\"Sergio Galan, P. Reviriego, Stefan Walzer, A. Sánchez-Macián, Shanshan Liu, Fabrizio Lombardi\",\"doi\":\"10.1109/TDSC.2022.3217115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting Bloom Filters (CBFs) are approximate membership checking data structures, and it is normally believed that at most an approximate reconstruction of the underlying set can be derived when interacting with a CBF. This paper decisively refutes this assumption. In a recent paper, we considered the privacy of CBFs when the attacker has access to the implementation details and thus, it sees the filter as a white-box. In that setting, we showed that the attacker may be able to extract the elements stored in the filter when the number of false positives over the entire universe is not significantly larger than the number of elements stored in the filter. In this work, we consider a black-box attacker that can only perform user interactions on the CBF to insert, remove and query elements with no knowledge of the filter implementation details. We show that even in this case, an attacker may be able to extract information from the filter at the cost of using more complex and time-consuming attack algorithms. The proposed algorithms have been implemented and compared with the white-box attack, showing that in most cases, almost the same information can be extracted from the filter.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"4434-4440\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3217115\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3217115","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
On the Privacy of Counting Bloom Filters Under a Black-Box Attacker
Counting Bloom Filters (CBFs) are approximate membership checking data structures, and it is normally believed that at most an approximate reconstruction of the underlying set can be derived when interacting with a CBF. This paper decisively refutes this assumption. In a recent paper, we considered the privacy of CBFs when the attacker has access to the implementation details and thus, it sees the filter as a white-box. In that setting, we showed that the attacker may be able to extract the elements stored in the filter when the number of false positives over the entire universe is not significantly larger than the number of elements stored in the filter. In this work, we consider a black-box attacker that can only perform user interactions on the CBF to insert, remove and query elements with no knowledge of the filter implementation details. We show that even in this case, an attacker may be able to extract information from the filter at the cost of using more complex and time-consuming attack algorithms. The proposed algorithms have been implemented and compared with the white-box attack, showing that in most cases, almost the same information can be extracted from the filter.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.