{"title":"达格列嗪的化学、生物学特性及分析技术研究进展","authors":"Ujwala Chaudhari, J. Sahu, P. Dande","doi":"10.2174/2213337210666230627153351","DOIUrl":null,"url":null,"abstract":"\n\nGlobally, type 2 diabetes mellitus (T2DM) prevalence is increasing. A patient must have lifetime therapy for diabetes to manage it and prevent any complications. There are many different medications that can be used to treat Type 2 diabetes. Still, almost all of them concentrate on the declining insulin sensitivity and secretion that are associated with the onset of the illness.\n\n\n\nThere is growing interest in the development of innovative anti-diabetic medications that are not insulin-reliant because treatments with such insulin-dependent mechanisms of action usually lose their effectiveness over time. One such technique is the inhibition of renal glucose reuptake.\n\n\n\nDapagliflozin, the first line of selective sodium-glucose cotransporter 2 inhibitors that re-duce renal glucose reabsorption, is currently being developed as a therapy for Type 2 diabetes. Numerous analytical techniques have been developed for its detection, measurement, and regular quality control procedures.\n\n\n\nThis review deliberates a thorough discussion on the chemistry of Dapagliflozin, all of its pharmacological actions with analytical and bioanalytical analyses, and more information on the clinical trials.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Updated Review on the Chemistry, Biological Characteristics and Ana-lytical Techniques of Dapagliflozin\",\"authors\":\"Ujwala Chaudhari, J. Sahu, P. Dande\",\"doi\":\"10.2174/2213337210666230627153351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nGlobally, type 2 diabetes mellitus (T2DM) prevalence is increasing. A patient must have lifetime therapy for diabetes to manage it and prevent any complications. There are many different medications that can be used to treat Type 2 diabetes. Still, almost all of them concentrate on the declining insulin sensitivity and secretion that are associated with the onset of the illness.\\n\\n\\n\\nThere is growing interest in the development of innovative anti-diabetic medications that are not insulin-reliant because treatments with such insulin-dependent mechanisms of action usually lose their effectiveness over time. One such technique is the inhibition of renal glucose reuptake.\\n\\n\\n\\nDapagliflozin, the first line of selective sodium-glucose cotransporter 2 inhibitors that re-duce renal glucose reabsorption, is currently being developed as a therapy for Type 2 diabetes. Numerous analytical techniques have been developed for its detection, measurement, and regular quality control procedures.\\n\\n\\n\\nThis review deliberates a thorough discussion on the chemistry of Dapagliflozin, all of its pharmacological actions with analytical and bioanalytical analyses, and more information on the clinical trials.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230627153351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230627153351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An Updated Review on the Chemistry, Biological Characteristics and Ana-lytical Techniques of Dapagliflozin
Globally, type 2 diabetes mellitus (T2DM) prevalence is increasing. A patient must have lifetime therapy for diabetes to manage it and prevent any complications. There are many different medications that can be used to treat Type 2 diabetes. Still, almost all of them concentrate on the declining insulin sensitivity and secretion that are associated with the onset of the illness.
There is growing interest in the development of innovative anti-diabetic medications that are not insulin-reliant because treatments with such insulin-dependent mechanisms of action usually lose their effectiveness over time. One such technique is the inhibition of renal glucose reuptake.
Dapagliflozin, the first line of selective sodium-glucose cotransporter 2 inhibitors that re-duce renal glucose reabsorption, is currently being developed as a therapy for Type 2 diabetes. Numerous analytical techniques have been developed for its detection, measurement, and regular quality control procedures.
This review deliberates a thorough discussion on the chemistry of Dapagliflozin, all of its pharmacological actions with analytical and bioanalytical analyses, and more information on the clinical trials.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.