W. Stachurski, J. Sawicki, P. Zgórniak, E. Wołowiec-Korecka
{"title":"单件流热化学处理工艺条件对孔淬火变形的影响","authors":"W. Stachurski, J. Sawicki, P. Zgórniak, E. Wołowiec-Korecka","doi":"10.5604/01.3001.0053.7476","DOIUrl":null,"url":null,"abstract":"Pulsed low-pressure carburizing (LPC) and omnidirectional high-pressure gas quenching (HPGQ) are innovative methods for quenching the surface layer. The thermo-chemical treatment carried out by this method reduces quenching geometric deformations, with detailed numerical values not available in the literature due to the short existence of this method.Sixteen toothed elements of EN 20MnCr5 steel were subjected to pulsed low-pressure carburising with omnidirectional jet quenching in 4 groups, varying the process temperature (920C, 960C) and in two groups performing a tempering treatment. The elements were tested before machining by measuring their internal hole diameters, radial runout, roundness and cylindricity. These values were tested again after treatment. The direction of change and the statistical significance of the effect of treatment and its parameters, temperature and tempering were analysed.Thermo-chemical treatment significantly affects geometric changes in diameters, roundness, cylindricity and radial runout compared to elements without heat treatment due to physical transformations occurring during this treatment (p<0.05). Changing the process temperature in the value range of 920C-960C affects the hole diameter (makes it smaller) (p<0.05), but does not affect radial runout, cylindricity and roundness. The observed dimensional changes in diameters have numerically small values (<0.005 mm). The tempering treatment can affect the values of average diameters. Its effect on roundness, cylindricity and radial runout was not observed.In the temperature range studied, the method of pulsed low-pressure carburising + omnidirectional high-pressure gas quenching makes it possible to raise the temperature of the process and shorten its duration without significant geometric changes in the treated elements.The method of pulsed low-pressure carburising and omnidirectional high-pressure gas quenching (HPGQ) ensures the maintenance of reproducible quenching deformations at a level significantly lower than conventional processing methods.The method of pulsed low-pressure carburising together with omnidirectional high-pressure gas quenching (HPGQ) is a method that has been used briefly in the industry, and there are few reports on it to date.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of single-piece flow thermo-chemical treatment process conditions on hole quenching deformation\",\"authors\":\"W. Stachurski, J. Sawicki, P. Zgórniak, E. Wołowiec-Korecka\",\"doi\":\"10.5604/01.3001.0053.7476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed low-pressure carburizing (LPC) and omnidirectional high-pressure gas quenching (HPGQ) are innovative methods for quenching the surface layer. The thermo-chemical treatment carried out by this method reduces quenching geometric deformations, with detailed numerical values not available in the literature due to the short existence of this method.Sixteen toothed elements of EN 20MnCr5 steel were subjected to pulsed low-pressure carburising with omnidirectional jet quenching in 4 groups, varying the process temperature (920C, 960C) and in two groups performing a tempering treatment. The elements were tested before machining by measuring their internal hole diameters, radial runout, roundness and cylindricity. These values were tested again after treatment. The direction of change and the statistical significance of the effect of treatment and its parameters, temperature and tempering were analysed.Thermo-chemical treatment significantly affects geometric changes in diameters, roundness, cylindricity and radial runout compared to elements without heat treatment due to physical transformations occurring during this treatment (p<0.05). Changing the process temperature in the value range of 920C-960C affects the hole diameter (makes it smaller) (p<0.05), but does not affect radial runout, cylindricity and roundness. The observed dimensional changes in diameters have numerically small values (<0.005 mm). The tempering treatment can affect the values of average diameters. Its effect on roundness, cylindricity and radial runout was not observed.In the temperature range studied, the method of pulsed low-pressure carburising + omnidirectional high-pressure gas quenching makes it possible to raise the temperature of the process and shorten its duration without significant geometric changes in the treated elements.The method of pulsed low-pressure carburising and omnidirectional high-pressure gas quenching (HPGQ) ensures the maintenance of reproducible quenching deformations at a level significantly lower than conventional processing methods.The method of pulsed low-pressure carburising together with omnidirectional high-pressure gas quenching (HPGQ) is a method that has been used briefly in the industry, and there are few reports on it to date.\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.7476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.7476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Impact of single-piece flow thermo-chemical treatment process conditions on hole quenching deformation
Pulsed low-pressure carburizing (LPC) and omnidirectional high-pressure gas quenching (HPGQ) are innovative methods for quenching the surface layer. The thermo-chemical treatment carried out by this method reduces quenching geometric deformations, with detailed numerical values not available in the literature due to the short existence of this method.Sixteen toothed elements of EN 20MnCr5 steel were subjected to pulsed low-pressure carburising with omnidirectional jet quenching in 4 groups, varying the process temperature (920C, 960C) and in two groups performing a tempering treatment. The elements were tested before machining by measuring their internal hole diameters, radial runout, roundness and cylindricity. These values were tested again after treatment. The direction of change and the statistical significance of the effect of treatment and its parameters, temperature and tempering were analysed.Thermo-chemical treatment significantly affects geometric changes in diameters, roundness, cylindricity and radial runout compared to elements without heat treatment due to physical transformations occurring during this treatment (p<0.05). Changing the process temperature in the value range of 920C-960C affects the hole diameter (makes it smaller) (p<0.05), but does not affect radial runout, cylindricity and roundness. The observed dimensional changes in diameters have numerically small values (<0.005 mm). The tempering treatment can affect the values of average diameters. Its effect on roundness, cylindricity and radial runout was not observed.In the temperature range studied, the method of pulsed low-pressure carburising + omnidirectional high-pressure gas quenching makes it possible to raise the temperature of the process and shorten its duration without significant geometric changes in the treated elements.The method of pulsed low-pressure carburising and omnidirectional high-pressure gas quenching (HPGQ) ensures the maintenance of reproducible quenching deformations at a level significantly lower than conventional processing methods.The method of pulsed low-pressure carburising together with omnidirectional high-pressure gas quenching (HPGQ) is a method that has been used briefly in the industry, and there are few reports on it to date.