基于深度迁移学习的高光谱作物类型分类智能正弦余弦优化

IF 2 4区 地球科学 Q3 REMOTE SENSING
José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento, R. Mansour
{"title":"基于深度迁移学习的高光谱作物类型分类智能正弦余弦优化","authors":"José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento, R. Mansour","doi":"10.1080/07038992.2022.2081538","DOIUrl":null,"url":null,"abstract":"Abstract Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"621 - 632"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images\",\"authors\":\"José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento, R. Mansour\",\"doi\":\"10.1080/07038992.2022.2081538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"621 - 632\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2022.2081538\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2081538","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

摘要

摘要高光谱遥感(HRS)是一种新兴的多学科范式,在材料光谱学、辐射传输和成像光谱学的基础上发展起来,具有多种应用。HRS在农业作物类型分类和土壤预测中发挥着至关重要的作用。最近开发的人工智能技术可以用于使用HRS的作物类型分类。本研究开发了一种基于深度迁移学习的作物类型智能正弦余弦优化(ISCO-DTLCTC)模型。ISCO-DTLCTC技术包括提取感兴趣区域的初始预处理步骤。采用基于信息增益的特征约简技术对原始高光谱图像进行降维处理。此外,融合了3个深度卷积神经网络模型,即VGG16、SqueezeNet和Dense EfficientNet,执行特征提取过程。此外,将修正Elman神经网络(MENN)模型的正余弦优化(SCO)算法应用于作物类型分类。SCO算法的设计有助于熟练地选择MENN模型中涉及的参数。ISCO-DTLCTC模型的性能验证是使用基准数据集进行的,并在多种措施下检查了结果。广泛的比较结果表明,ISCO-DTLCTC模型比现有技术的方法有所改进,最大准确率为99.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images
Abstract Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
3.80%
发文量
40
期刊介绍: Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT). Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信