{"title":"ECC加固砌体墙的平面外响应","authors":"P. Munjal, S. Singh","doi":"10.1080/24705314.2019.1692165","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper focuses on the flexural behavior of masonry walls strengthened with precast engineered cementitious composite (ECC) sheet. The walls were subjected to out-of-plane static loading and analyzed using ABAQUS. For the validation of numerical results, four masonry walls of size 762 × 480 × 230 mm were cast using burnt clay bricks and cement mortar. Out of four, two masonry walls were strengthened with precast ECC sheet using epoxy as adhesive, and the remaining two acted as control specimens. The validation of numerical results with the experimental results shows that the model can effectively capture the nonlinear behavior of masonry and ECC to predict the strength and failure mechanism. The influence of mesh size on the numerical results is also reported. Further, a parametric study has been carried out to observe the effect of several parameters such as percentage of ECC reinforcement ratio, span/depth (L/d) ratio and width/thickness (b/h) ratio of the strengthened masonry walls. This study reveals that the precast ECC sheet increases the load-carrying capacity and ductility of brick masonry walls and hence demonstrates its performance as a strengthening element for brick masonry structures.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":"5 1","pages":"18 - 30"},"PeriodicalIF":3.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2019.1692165","citationCount":"17","resultStr":"{\"title\":\"Out-of-plane response of ECC-strengthened masonry walls\",\"authors\":\"P. Munjal, S. Singh\",\"doi\":\"10.1080/24705314.2019.1692165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper focuses on the flexural behavior of masonry walls strengthened with precast engineered cementitious composite (ECC) sheet. The walls were subjected to out-of-plane static loading and analyzed using ABAQUS. For the validation of numerical results, four masonry walls of size 762 × 480 × 230 mm were cast using burnt clay bricks and cement mortar. Out of four, two masonry walls were strengthened with precast ECC sheet using epoxy as adhesive, and the remaining two acted as control specimens. The validation of numerical results with the experimental results shows that the model can effectively capture the nonlinear behavior of masonry and ECC to predict the strength and failure mechanism. The influence of mesh size on the numerical results is also reported. Further, a parametric study has been carried out to observe the effect of several parameters such as percentage of ECC reinforcement ratio, span/depth (L/d) ratio and width/thickness (b/h) ratio of the strengthened masonry walls. This study reveals that the precast ECC sheet increases the load-carrying capacity and ductility of brick masonry walls and hence demonstrates its performance as a strengthening element for brick masonry structures.\",\"PeriodicalId\":43844,\"journal\":{\"name\":\"Journal of Structural Integrity and Maintenance\",\"volume\":\"5 1\",\"pages\":\"18 - 30\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24705314.2019.1692165\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Integrity and Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705314.2019.1692165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2019.1692165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Out-of-plane response of ECC-strengthened masonry walls
ABSTRACT This paper focuses on the flexural behavior of masonry walls strengthened with precast engineered cementitious composite (ECC) sheet. The walls were subjected to out-of-plane static loading and analyzed using ABAQUS. For the validation of numerical results, four masonry walls of size 762 × 480 × 230 mm were cast using burnt clay bricks and cement mortar. Out of four, two masonry walls were strengthened with precast ECC sheet using epoxy as adhesive, and the remaining two acted as control specimens. The validation of numerical results with the experimental results shows that the model can effectively capture the nonlinear behavior of masonry and ECC to predict the strength and failure mechanism. The influence of mesh size on the numerical results is also reported. Further, a parametric study has been carried out to observe the effect of several parameters such as percentage of ECC reinforcement ratio, span/depth (L/d) ratio and width/thickness (b/h) ratio of the strengthened masonry walls. This study reveals that the precast ECC sheet increases the load-carrying capacity and ductility of brick masonry walls and hence demonstrates its performance as a strengthening element for brick masonry structures.