封闭的co-Hopfian模块

Q4 Mathematics
T. Y. Ghawi
{"title":"封闭的co-Hopfian模块","authors":"T. Y. Ghawi","doi":"10.24193/mathcluj.2022.2.06","DOIUrl":null,"url":null,"abstract":"In this paper, we properly generalize the notion of co-Hopficity for modules to the concept of closed co-Hopficity. A module M is said to be closed co-Hopfian if any injective endomorphism of M has a closed submodule image. The aim of this paper is to study and investigate this class of modules. In addition, some relations for this class with other types of modules are provided.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed co-Hopfian modules\",\"authors\":\"T. Y. Ghawi\",\"doi\":\"10.24193/mathcluj.2022.2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we properly generalize the notion of co-Hopficity for modules to the concept of closed co-Hopficity. A module M is said to be closed co-Hopfian if any injective endomorphism of M has a closed submodule image. The aim of this paper is to study and investigate this class of modules. In addition, some relations for this class with other types of modules are provided.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2022.2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2022.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文将模的共共性的概念适当地推广到闭合共共性的概念。如果M的任何一个内射自同态有一个闭子模象,则称模M是闭共霍普芬的。本文的目的就是对这类模块进行研究和探讨。此外,还提供了该类与其他类型模块的一些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed co-Hopfian modules
In this paper, we properly generalize the notion of co-Hopficity for modules to the concept of closed co-Hopficity. A module M is said to be closed co-Hopfian if any injective endomorphism of M has a closed submodule image. The aim of this paper is to study and investigate this class of modules. In addition, some relations for this class with other types of modules are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信