{"title":"具有不同非线性律的保形时空分数次三次非线性薛定谔方程的一种有效方法","authors":"T. Mathanaranjan","doi":"10.22034/CMDE.2021.46753.1964","DOIUrl":null,"url":null,"abstract":"In the present study, we investigate the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with three different laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local law.This model governs the propagation of solitons through nonlinear optical fibers. An effective approach namely, the exp(-Pi(xi))-expansion method is applied to construct some new exact solutions of the governing model. Consequently, the dark, singular, rational and periodic solitary wave solutions are successfully revealed. The comparisons with other results are also presented. In addition, the dynamical structures of obtained solutions are presented through 3D and 2D plots.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity\",\"authors\":\"T. Mathanaranjan\",\"doi\":\"10.22034/CMDE.2021.46753.1964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we investigate the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with three different laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local law.This model governs the propagation of solitons through nonlinear optical fibers. An effective approach namely, the exp(-Pi(xi))-expansion method is applied to construct some new exact solutions of the governing model. Consequently, the dark, singular, rational and periodic solitary wave solutions are successfully revealed. The comparisons with other results are also presented. In addition, the dynamical structures of obtained solutions are presented through 3D and 2D plots.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.46753.1964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.46753.1964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity
In the present study, we investigate the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with three different laws of nonlinearity namely, parabolic law, quadratic-cubic law, and weak non-local law.This model governs the propagation of solitons through nonlinear optical fibers. An effective approach namely, the exp(-Pi(xi))-expansion method is applied to construct some new exact solutions of the governing model. Consequently, the dark, singular, rational and periodic solitary wave solutions are successfully revealed. The comparisons with other results are also presented. In addition, the dynamical structures of obtained solutions are presented through 3D and 2D plots.