{"title":"合理椭圆环型品种","authors":"I. Biswas, V. Muñoz, A. Murillo","doi":"10.3836/tjm/1502179327","DOIUrl":null,"url":null,"abstract":"We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Rationally Elliptic Toric Varieties\",\"authors\":\"I. Biswas, V. Muñoz, A. Murillo\",\"doi\":\"10.3836/tjm/1502179327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.