将某些向量值函数空间表示为张量积

Pub Date : 2023-06-08 DOI:10.1007/s10476-023-0218-2
M. Abtahi
{"title":"将某些向量值函数空间表示为张量积","authors":"M. Abtahi","doi":"10.1007/s10476-023-0218-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>E</i> be a Banach space. For a topological space <i>X</i>, let <span>\\({{\\cal C}_b}(X,E)\\)</span> be the space of all bounded continuous <i>E</i>-valued functions on <i>X</i>, and let <span>\\({{\\cal C}_K}(X,E)\\)</span> be the subspace of <span>\\({{\\cal C}_b}(X,E)\\)</span> consisting of all functions having a pre-compact image in <i>E</i>. We show that <span>\\({{\\cal C}_K}(X,E)\\)</span> is isometrically isomorphic to the injective tensor product <span>\\({{\\cal C}_b}(X){{\\hat \\otimes}_\\varepsilon}E\\)</span>, and that <span>\\({{\\cal C}_b}(X,E) = {{\\cal C}_b}(X){{\\hat \\otimes}_\\varepsilon}E\\)</span> if and only if <i>E</i> is finite dimensional. Next, we consider the space Lip(<i>X, E</i>) of <i>E</i>-valued Lipschitz operators on a metric space (<i>X, d</i>) and its subspace Lip<sub><i>K</i></sub>(<i>X, E</i>) of Lipschitz compact operators. Utilizing the results on <span>\\({{\\cal C}_b}(X,E)\\)</span>, we prove that Lip<sub><i>K</i></sub>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\({\\rm{Lip}}(X){{\\hat \\otimes}_\\alpha}E\\)</span>, and that <span>\\({\\rm{Lip}}(X,E) = {\\rm{Lip}}(X){{\\hat \\otimes}_\\alpha}E\\)</span> if and only if <i>E</i> is finite dimensional. Finally, we consider the space <i>D</i><sup>1</sup>(<i>X, E</i>) of continuously differentiable functions on a perfect compact plane set <i>X</i> and show that, under certain conditions, <i>D</i><sup>1</sup>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\({D^1}(X){\\hat \\otimes _\\beta}E\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing certain vector-valued function spaces as tensor products\",\"authors\":\"M. Abtahi\",\"doi\":\"10.1007/s10476-023-0218-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>E</i> be a Banach space. For a topological space <i>X</i>, let <span>\\\\({{\\\\cal C}_b}(X,E)\\\\)</span> be the space of all bounded continuous <i>E</i>-valued functions on <i>X</i>, and let <span>\\\\({{\\\\cal C}_K}(X,E)\\\\)</span> be the subspace of <span>\\\\({{\\\\cal C}_b}(X,E)\\\\)</span> consisting of all functions having a pre-compact image in <i>E</i>. We show that <span>\\\\({{\\\\cal C}_K}(X,E)\\\\)</span> is isometrically isomorphic to the injective tensor product <span>\\\\({{\\\\cal C}_b}(X){{\\\\hat \\\\otimes}_\\\\varepsilon}E\\\\)</span>, and that <span>\\\\({{\\\\cal C}_b}(X,E) = {{\\\\cal C}_b}(X){{\\\\hat \\\\otimes}_\\\\varepsilon}E\\\\)</span> if and only if <i>E</i> is finite dimensional. Next, we consider the space Lip(<i>X, E</i>) of <i>E</i>-valued Lipschitz operators on a metric space (<i>X, d</i>) and its subspace Lip<sub><i>K</i></sub>(<i>X, E</i>) of Lipschitz compact operators. Utilizing the results on <span>\\\\({{\\\\cal C}_b}(X,E)\\\\)</span>, we prove that Lip<sub><i>K</i></sub>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\\\({\\\\rm{Lip}}(X){{\\\\hat \\\\otimes}_\\\\alpha}E\\\\)</span>, and that <span>\\\\({\\\\rm{Lip}}(X,E) = {\\\\rm{Lip}}(X){{\\\\hat \\\\otimes}_\\\\alpha}E\\\\)</span> if and only if <i>E</i> is finite dimensional. Finally, we consider the space <i>D</i><sup>1</sup>(<i>X, E</i>) of continuously differentiable functions on a perfect compact plane set <i>X</i> and show that, under certain conditions, <i>D</i><sup>1</sup>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\\\({D^1}(X){\\\\hat \\\\otimes _\\\\beta}E\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0218-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0218-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设E是Banach空间。对于拓扑空间X,设\({\cal C}_b}(X,E)\)是X上所有有界连续E值函数的空间,设\εE\),并且当且仅当E是有限维的。接下来,我们考虑度量空间(X,d)上E值Lipschitz算子的空间Lip(X,E)及其Lipschitz-紧算子的子空间LipK(X,E)。利用关于({\cal C}_b}(X,E)的结果,我们证明了LipK(X,E)等距同构于张量积({\rm{Lip})(X){\hat\otimes}_\alpha}E\),并且当且仅当E是有限维的。最后,我们考虑了完备紧致平面集X上连续可微函数的空间D1(X,E),并证明了在一定条件下,D1(X、E)等距同构于张量积({D^1}(X){\hat\otimes_\beta}E\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Representing certain vector-valued function spaces as tensor products

Let E be a Banach space. For a topological space X, let \({{\cal C}_b}(X,E)\) be the space of all bounded continuous E-valued functions on X, and let \({{\cal C}_K}(X,E)\) be the subspace of \({{\cal C}_b}(X,E)\) consisting of all functions having a pre-compact image in E. We show that \({{\cal C}_K}(X,E)\) is isometrically isomorphic to the injective tensor product \({{\cal C}_b}(X){{\hat \otimes}_\varepsilon}E\), and that \({{\cal C}_b}(X,E) = {{\cal C}_b}(X){{\hat \otimes}_\varepsilon}E\) if and only if E is finite dimensional. Next, we consider the space Lip(X, E) of E-valued Lipschitz operators on a metric space (X, d) and its subspace LipK(X, E) of Lipschitz compact operators. Utilizing the results on \({{\cal C}_b}(X,E)\), we prove that LipK(X, E) is isometrically isomorphic to a tensor product \({\rm{Lip}}(X){{\hat \otimes}_\alpha}E\), and that \({\rm{Lip}}(X,E) = {\rm{Lip}}(X){{\hat \otimes}_\alpha}E\) if and only if E is finite dimensional. Finally, we consider the space D1(X, E) of continuously differentiable functions on a perfect compact plane set X and show that, under certain conditions, D1(X, E) is isometrically isomorphic to a tensor product \({D^1}(X){\hat \otimes _\beta}E\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信