{"title":"代谢组学和抗氧化应激的调节参与了硝唑尼特抗甲型流感病毒的体外作用","authors":"Zhen Huang, Haihong Zheng, Yanping Wang, Xiao-yang Wang, Chunmei Wang, Yingchun Liu, Wen Zhou, Zhaoxiong Wang, Ke‐Zhi Zhang","doi":"10.3389/av.2023.11612","DOIUrl":null,"url":null,"abstract":"The prevalence of highly infectious influenza A virus (IAV) is still a major threat to global human health. Nitazoxanide (NTZ) possesses potent antiviral properties against the influenza virus. However, the role of small molecular metabolites and antioxidant stress in the NTZ’s anti-influenza virus mechanism is not yet fully understood. This study compared the changes in cellular metabolism, ROS levels, antioxidant enzyme activities, and Keap-1/Nrf2 pathway in IAV-infected MDCK cells after NTZ treatment in vitro, using LC-MS-based metabolomics, flow cytometry, immunoblot. We observed that the NTZ treatment in the IAV-infected cells drastically altered the metabolism of small molecules, among which eleven metabolites were highly relevant to NTZ. The virus induced oxidative stress was also remarkably suppressed by NTZ. Meanwhile, the Nrf2 pathway and some proteins with modulating antiviral activity were activated after NTZ treatment, protecting cells from IAV injury. Therefore, regulation of the intracellular oxidative state is the primary outcome of NTZ treatment, which may underpin an antiviral mechanism attributed to the thiazolide.","PeriodicalId":7205,"journal":{"name":"Acta virologica","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The modulation of metabolomics and antioxidant stress is involved in the effect of nitazoxanide against influenza A virus in vitro\",\"authors\":\"Zhen Huang, Haihong Zheng, Yanping Wang, Xiao-yang Wang, Chunmei Wang, Yingchun Liu, Wen Zhou, Zhaoxiong Wang, Ke‐Zhi Zhang\",\"doi\":\"10.3389/av.2023.11612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of highly infectious influenza A virus (IAV) is still a major threat to global human health. Nitazoxanide (NTZ) possesses potent antiviral properties against the influenza virus. However, the role of small molecular metabolites and antioxidant stress in the NTZ’s anti-influenza virus mechanism is not yet fully understood. This study compared the changes in cellular metabolism, ROS levels, antioxidant enzyme activities, and Keap-1/Nrf2 pathway in IAV-infected MDCK cells after NTZ treatment in vitro, using LC-MS-based metabolomics, flow cytometry, immunoblot. We observed that the NTZ treatment in the IAV-infected cells drastically altered the metabolism of small molecules, among which eleven metabolites were highly relevant to NTZ. The virus induced oxidative stress was also remarkably suppressed by NTZ. Meanwhile, the Nrf2 pathway and some proteins with modulating antiviral activity were activated after NTZ treatment, protecting cells from IAV injury. Therefore, regulation of the intracellular oxidative state is the primary outcome of NTZ treatment, which may underpin an antiviral mechanism attributed to the thiazolide.\",\"PeriodicalId\":7205,\"journal\":{\"name\":\"Acta virologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta virologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/av.2023.11612\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta virologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/av.2023.11612","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
The modulation of metabolomics and antioxidant stress is involved in the effect of nitazoxanide against influenza A virus in vitro
The prevalence of highly infectious influenza A virus (IAV) is still a major threat to global human health. Nitazoxanide (NTZ) possesses potent antiviral properties against the influenza virus. However, the role of small molecular metabolites and antioxidant stress in the NTZ’s anti-influenza virus mechanism is not yet fully understood. This study compared the changes in cellular metabolism, ROS levels, antioxidant enzyme activities, and Keap-1/Nrf2 pathway in IAV-infected MDCK cells after NTZ treatment in vitro, using LC-MS-based metabolomics, flow cytometry, immunoblot. We observed that the NTZ treatment in the IAV-infected cells drastically altered the metabolism of small molecules, among which eleven metabolites were highly relevant to NTZ. The virus induced oxidative stress was also remarkably suppressed by NTZ. Meanwhile, the Nrf2 pathway and some proteins with modulating antiviral activity were activated after NTZ treatment, protecting cells from IAV injury. Therefore, regulation of the intracellular oxidative state is the primary outcome of NTZ treatment, which may underpin an antiviral mechanism attributed to the thiazolide.
期刊介绍:
Acta virologica is an international journal of predominantly molecular and cellular virology. Acta virologica aims to publish papers reporting original results of fundamental and applied research mainly on human, animal and plant viruses at cellular and molecular level. As a matter of tradition, also rickettsiae are included. Areas of interest are virus structure and morphology, molecular biology of virus-cell interactions, molecular genetics of viruses, pathogenesis of viral diseases, viral immunology, vaccines, antiviral drugs and viral diagnostics.