涉及Lq范数的p−拉普拉斯算子的Steklov问题

Q3 Mathematics
M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani
{"title":"涉及Lq范数的p−拉普拉斯算子的Steklov问题","authors":"M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani","doi":"10.2478/mjpaa-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \\left\\{ {\\matrix{{{\\Delta _p}u = {{\\left| u \\right|}^{p - 2}}u} \\hfill & {{\\rm{in}}\\,\\Omega ,} \\hfill \\cr {{{\\left| {\\nabla u} \\right|}^{p - 2}}{{\\partial u} \\over {\\partial v}} = \\lambda \\left\\| u \\right\\|_{q,\\partial \\Omega }^{p - q}{{\\left| u \\right|}^{q - 2}}u} \\hfill & {{\\rm{on}}\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"228 - 243"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steklov problems for the p−Laplace operator involving Lq-norm\",\"authors\":\"M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani\",\"doi\":\"10.2478/mjpaa-2022-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \\\\left\\\\{ {\\\\matrix{{{\\\\Delta _p}u = {{\\\\left| u \\\\right|}^{p - 2}}u} \\\\hfill & {{\\\\rm{in}}\\\\,\\\\Omega ,} \\\\hfill \\\\cr {{{\\\\left| {\\\\nabla u} \\\\right|}^{p - 2}}{{\\\\partial u} \\\\over {\\\\partial v}} = \\\\lambda \\\\left\\\\| u \\\\right\\\\|_{q,\\\\partial \\\\Omega }^{p - q}{{\\\\left| u \\\\right|}^{q - 2}}u} \\\\hfill & {{\\\\rm{on}}\\\\,\\\\partial \\\\Omega ,} \\\\hfill \\\\cr } } \\\\right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"228 - 243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了形式为{Δpu=|u|p-2uin的非线性Steklov问题的谱 Ω,|Şu|p-2⏴u⏴v=λ‖u‖q,⏴Ωp-q|u|q-2uon ∂Ω,\left矩阵{{\Delta _p}u={\left | u \right |}^{p-2}u}\hfill&{\rm{in}}\,\Omega,}\hfill \cr{\rm{on}}\,\ partial \ Omega,}\ hfill \ cr}\ right。其中Ω是中的光滑有界域ℝN(N≥1),λ是一个起特征值作用的实数,未知数u∈W1,p(Ω)。利用C1流形上的Ljusterneck-Shnielmann理论和Sobolev迹嵌入,我们证明了上述问题的特征值(λk)k≥1的递增序列正的存在性。然后,我们确定第一特征值是简单且孤立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steklov problems for the p−Laplace operator involving Lq-norm
Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信