变指数时变Lebesgue空间上的演化方程

Pub Date : 2023-07-24 DOI:10.58997/ejde.2023.50
J. Simsen
{"title":"变指数时变Lebesgue空间上的演化方程","authors":"J. Simsen","doi":"10.58997/ejde.2023.50","DOIUrl":null,"url":null,"abstract":"We extend the results in Kloeden-Simsen [CPAA 2014] to \\(p(x,t)\\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\\displaylines{  \\frac{\\partial u_\\lambda}{\\partial t}(t)-\\operatorname{div}\\big(D_\\lambda(t,x)|\\nabla u_\\lambda(t)|^{p(x,t)-2}\\nabla  _\\lambda(t)\\big)+|u_\\lambda(t)|^{p(x,t)-2}u_\\lambda(t)  =B(t,u_\\lambda(t)) }$$on a bounded smooth domain \\(\\Omega\\) in \\(\\mathbb{R}^n\\),\\(n\\geq 1\\), with a homogeneous Neumann boundary condition, where the exponent \\(p(\\cdot)\\in C(\\bar{\\Omega}\\times [\\tau,T],\\mathbb{R}^+)\\) satisfies \\(\\min p(x,t)>2\\), and \\(\\lambda\\in [0,\\infty)\\) is a parameter.\nFor more information see https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution equations on time-dependent Lebesgue spaces with variable exponents\",\"authors\":\"J. Simsen\",\"doi\":\"10.58997/ejde.2023.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the results in Kloeden-Simsen [CPAA 2014] to \\\\(p(x,t)\\\\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\\\\displaylines{  \\\\frac{\\\\partial u_\\\\lambda}{\\\\partial t}(t)-\\\\operatorname{div}\\\\big(D_\\\\lambda(t,x)|\\\\nabla u_\\\\lambda(t)|^{p(x,t)-2}\\\\nabla  _\\\\lambda(t)\\\\big)+|u_\\\\lambda(t)|^{p(x,t)-2}u_\\\\lambda(t)  =B(t,u_\\\\lambda(t)) }$$on a bounded smooth domain \\\\(\\\\Omega\\\\) in \\\\(\\\\mathbb{R}^n\\\\),\\\\(n\\\\geq 1\\\\), with a homogeneous Neumann boundary condition, where the exponent \\\\(p(\\\\cdot)\\\\in C(\\\\bar{\\\\Omega}\\\\times [\\\\tau,T],\\\\mathbb{R}^+)\\\\) satisfies \\\\(\\\\min p(x,t)>2\\\\), and \\\\(\\\\lambda\\\\in [0,\\\\infty)\\\\) is a parameter.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将Kloeden-Simsen [CPAA 2014]中的结果推广到\(p(x,t)\) -拉普拉斯问题上的变指数时变Lebesgue空间。研究了在\(\mathbb{R}^n\), \(n\geq 1\)中有界光滑域\(\Omega\)上的方程$$\displaylines{  \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla  _\lambda(t)\big)+|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t)  =B(t,u_\lambda(t)) }$$,该方程具有齐次Neumann边界条件,其中指数\(p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)\)满足\(\min p(x,t)>2\), \(\lambda\in [0,\infty)\)是一个参数。欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Evolution equations on time-dependent Lebesgue spaces with variable exponents
We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces withvariable exponents. We study the equation $$\displaylines{  \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla  _\lambda(t)\big)+|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t)  =B(t,u_\lambda(t)) }$$on a bounded smooth domain \(\Omega\) in \(\mathbb{R}^n\),\(n\geq 1\), with a homogeneous Neumann boundary condition, where the exponent \(p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)\) satisfies \(\min p(x,t)>2\), and \(\lambda\in [0,\infty)\) is a parameter. For more information see https://ejde.math.txstate.edu/Volumes/2023/50/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信