Yang Liu, Yujie Sun, Shikang Tao, Min Wang, Qian Shen, Jiru Huang
{"title":"利用语义分割和基于对象的变化检测从无人机图像中发现屋顶内潜在的非法建筑","authors":"Yang Liu, Yujie Sun, Shikang Tao, Min Wang, Qian Shen, Jiru Huang","doi":"10.14358/PERS.87.4.263","DOIUrl":null,"url":null,"abstract":"A novel potential illegal construction (PIC) detection method by bitemporal unmanned aerial vehicle (UAV ) image comparison (change detection) within building roof areas is proposed. In this method, roofs are first extracted from UAV images using a depth-channel improved UNet model.\n A two-step change detection scheme is then implemented for PIC detection. In the change detection stage, roofs with appearance, disappearance, and shape changes are first extracted by morphological analysis. Subroof primitives are then obtained by roof-constrained image segmentation within\n the remaining roof areas, and object-based iteratively reweighted multivariate alteration detection (IR-MAD ) is implemented to extract the small PICs from the subroof primitives. The proposed method organically combines deep learning and object-based image analysis, which can identify entire\n roof changes and locate small object changes within the roofs. Experiments show that the proposed method has better accuracy compared with the other counterparts, including the original IR-MAD, change vector analysis, and principal components analysis-K-means.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Potential Illegal Construction Within Building Roofs from UAV Images Using Semantic Segmentation and Object-Based Change Detection\",\"authors\":\"Yang Liu, Yujie Sun, Shikang Tao, Min Wang, Qian Shen, Jiru Huang\",\"doi\":\"10.14358/PERS.87.4.263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel potential illegal construction (PIC) detection method by bitemporal unmanned aerial vehicle (UAV ) image comparison (change detection) within building roof areas is proposed. In this method, roofs are first extracted from UAV images using a depth-channel improved UNet model.\\n A two-step change detection scheme is then implemented for PIC detection. In the change detection stage, roofs with appearance, disappearance, and shape changes are first extracted by morphological analysis. Subroof primitives are then obtained by roof-constrained image segmentation within\\n the remaining roof areas, and object-based iteratively reweighted multivariate alteration detection (IR-MAD ) is implemented to extract the small PICs from the subroof primitives. The proposed method organically combines deep learning and object-based image analysis, which can identify entire\\n roof changes and locate small object changes within the roofs. Experiments show that the proposed method has better accuracy compared with the other counterparts, including the original IR-MAD, change vector analysis, and principal components analysis-K-means.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/PERS.87.4.263\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/PERS.87.4.263","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Discovering Potential Illegal Construction Within Building Roofs from UAV Images Using Semantic Segmentation and Object-Based Change Detection
A novel potential illegal construction (PIC) detection method by bitemporal unmanned aerial vehicle (UAV ) image comparison (change detection) within building roof areas is proposed. In this method, roofs are first extracted from UAV images using a depth-channel improved UNet model.
A two-step change detection scheme is then implemented for PIC detection. In the change detection stage, roofs with appearance, disappearance, and shape changes are first extracted by morphological analysis. Subroof primitives are then obtained by roof-constrained image segmentation within
the remaining roof areas, and object-based iteratively reweighted multivariate alteration detection (IR-MAD ) is implemented to extract the small PICs from the subroof primitives. The proposed method organically combines deep learning and object-based image analysis, which can identify entire
roof changes and locate small object changes within the roofs. Experiments show that the proposed method has better accuracy compared with the other counterparts, including the original IR-MAD, change vector analysis, and principal components analysis-K-means.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.