调和Hadamard流形与高斯超几何微分方程

IF 1.1 2区 数学 Q1 MATHEMATICS
M. Itoh, H. Satoh
{"title":"调和Hadamard流形与高斯超几何微分方程","authors":"M. Itoh, H. Satoh","doi":"10.4171/PRIMS/55-3-3","DOIUrl":null,"url":null,"abstract":"A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-3","citationCount":"2","resultStr":"{\"title\":\"Harmonic Hadamard Manifolds and Gauss Hypergeometric Differential Equations\",\"authors\":\"M. Itoh, H. Satoh\",\"doi\":\"10.4171/PRIMS/55-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/55-3-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/55-3-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

用高斯超几何方程定义了一类新的调和Hadamard流形,即超几何型空间。定义在超几何型调和Hadamard流形上的球面傅立叶变换允许一个反演公式。关于体积密度,得到了超几何型调和Hadamard流形的一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Hadamard Manifolds and Gauss Hypergeometric Differential Equations
A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信