{"title":"调和Hadamard流形与高斯超几何微分方程","authors":"M. Itoh, H. Satoh","doi":"10.4171/PRIMS/55-3-3","DOIUrl":null,"url":null,"abstract":"A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-3","citationCount":"2","resultStr":"{\"title\":\"Harmonic Hadamard Manifolds and Gauss Hypergeometric Differential Equations\",\"authors\":\"M. Itoh, H. Satoh\",\"doi\":\"10.4171/PRIMS/55-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/PRIMS/55-3-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/55-3-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/55-3-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Harmonic Hadamard Manifolds and Gauss Hypergeometric Differential Equations
A new class of harmonic Hadamard manifolds, those spaces called of hypergeometric type, is defined in terms of Gauss hypergeometric equations. Spherical Fourier transform defined on a harmonic Hadamard manifold of hypergeometric type admits an inversion formula. A characterization of harmonic Hadamard manifold being of hypergeometric type is obtained with respect to volume density.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.