基于深度学习的自闭症功能性MRI图像分类框架

Xin Yang, S. Sarraf, Ning Zhang
{"title":"基于深度学习的自闭症功能性MRI图像分类框架","authors":"Xin Yang, S. Sarraf, Ning Zhang","doi":"10.54119/jaas.2018.7214","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce the deep learning-based framework LeNet-5 architecture and implement experiments for functional MRI image classification of Autism spectrum disorder. We implement our experiments under the NVIDIA deep learning GPU Training Systems (DIGITS). By using the Convolutional Neural Network (CNN) LeNet-5 architecture, we successfully classified functional MRI image of Autism spectrum disorder from normal controls. The results show that we obtained satisfactory results for both sensitivity and specificity.","PeriodicalId":30423,"journal":{"name":"Journal of the Arkansas Academy of Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Deep Learning-based framework for Autism functional MRI Image Classification\",\"authors\":\"Xin Yang, S. Sarraf, Ning Zhang\",\"doi\":\"10.54119/jaas.2018.7214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce the deep learning-based framework LeNet-5 architecture and implement experiments for functional MRI image classification of Autism spectrum disorder. We implement our experiments under the NVIDIA deep learning GPU Training Systems (DIGITS). By using the Convolutional Neural Network (CNN) LeNet-5 architecture, we successfully classified functional MRI image of Autism spectrum disorder from normal controls. The results show that we obtained satisfactory results for both sensitivity and specificity.\",\"PeriodicalId\":30423,\"journal\":{\"name\":\"Journal of the Arkansas Academy of Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Arkansas Academy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54119/jaas.2018.7214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Arkansas Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54119/jaas.2018.7214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文的目的是介绍基于深度学习的框架LeNet-5架构,并实现自闭症谱系障碍的功能MRI图像分类实验。我们在NVIDIA深度学习GPU训练系统(DIGITS)下实现我们的实验。采用卷积神经网络(CNN) LeNet-5架构,成功地将自闭症谱系障碍的功能MRI图像与正常对照进行了分类。结果表明,该方法在灵敏度和特异度上均取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based framework for Autism functional MRI Image Classification
The purpose of this paper is to introduce the deep learning-based framework LeNet-5 architecture and implement experiments for functional MRI image classification of Autism spectrum disorder. We implement our experiments under the NVIDIA deep learning GPU Training Systems (DIGITS). By using the Convolutional Neural Network (CNN) LeNet-5 architecture, we successfully classified functional MRI image of Autism spectrum disorder from normal controls. The results show that we obtained satisfactory results for both sensitivity and specificity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信