具有有界成分的完全非线性椭圆方程的势估计

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Edgard A. Pimentel, Miguel Walker
{"title":"具有有界成分的完全非线性椭圆方程的势估计","authors":"Edgard A. Pimentel, Miguel Walker","doi":"10.3934/mine.2023063","DOIUrl":null,"url":null,"abstract":"<abstract><p>We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione <sup>[<xref ref-type=\"bibr\" rid=\"b10\">10</xref>]</sup>.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Potential estimates for fully nonlinear elliptic equations with bounded ingredients\",\"authors\":\"Edgard A. Pimentel, Miguel Walker\",\"doi\":\"10.3934/mine.2023063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione <sup>[<xref ref-type=\\\"bibr\\\" rid=\\\"b10\\\">10</xref>]</sup>.</p></abstract>\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023063\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了具有有界可测成分的完全非线性椭圆方程的L^p -粘度解。通过考虑$ p_0 < p < d $,我们关注于非线性势的梯度正则性估计。我们找到了解的局部lipschitz -连续性和梯度的连续性的条件。我们调查了由(非线性)势估计引起的正则性理论的最新突破。我们的发现遵循并受到L^p -粘度解理论中的基本事实的启发,并在Panagiota Daskalopoulos, Tuomo Kuusi和Giuseppe Mingione bbb的工作中得到结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential estimates for fully nonlinear elliptic equations with bounded ingredients

We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione [10].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信