具有有界成分的完全非线性椭圆方程的势估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Edgard A. Pimentel, Miguel Walker
{"title":"具有有界成分的完全非线性椭圆方程的势估计","authors":"Edgard A. Pimentel, Miguel Walker","doi":"10.3934/mine.2023063","DOIUrl":null,"url":null,"abstract":"<abstract><p>We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione <sup>[<xref ref-type=\"bibr\" rid=\"b10\">10</xref>]</sup>.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Potential estimates for fully nonlinear elliptic equations with bounded ingredients\",\"authors\":\"Edgard A. Pimentel, Miguel Walker\",\"doi\":\"10.3934/mine.2023063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione <sup>[<xref ref-type=\\\"bibr\\\" rid=\\\"b10\\\">10</xref>]</sup>.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023063\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了具有有界可测成分的完全非线性椭圆方程的L^p -粘度解。通过考虑$ p_0 < p < d $,我们关注于非线性势的梯度正则性估计。我们找到了解的局部lipschitz -连续性和梯度的连续性的条件。我们调查了由(非线性)势估计引起的正则性理论的最新突破。我们的发现遵循并受到L^p -粘度解理论中的基本事实的启发,并在Panagiota Daskalopoulos, Tuomo Kuusi和Giuseppe Mingione bbb的工作中得到结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential estimates for fully nonlinear elliptic equations with bounded ingredients

We examine $ L^p $-viscosity solutions to fully nonlinear elliptic equations with bounded-measurable ingredients. By considering $ p_0 < p < d $, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of $ L^p $-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione [10].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信