具有无限延迟的Rosenblatt过程驱动的分数中立型泛函微分方程

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Lahmoudi, E. Lakhel
{"title":"具有无限延迟的Rosenblatt过程驱动的分数中立型泛函微分方程","authors":"A. Lahmoudi, E. Lakhel","doi":"10.1515/rose-2023-2009","DOIUrl":null,"url":null,"abstract":"Abstract This paper concerns a class of fractional impulsive neutral functional differential equations with an infinite delay driven by the Rosenblatt process. A set of sufficient conditions are established for the existence of new mild solutions using fixed point theory. Finally, an illustrative example is provided to demonstrate the applicability of the theoretical result.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional neutral functional differential equations driven by the Rosenblatt process with an infinite delay\",\"authors\":\"A. Lahmoudi, E. Lakhel\",\"doi\":\"10.1515/rose-2023-2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper concerns a class of fractional impulsive neutral functional differential equations with an infinite delay driven by the Rosenblatt process. A set of sufficient conditions are established for the existence of new mild solutions using fixed point theory. Finally, an illustrative example is provided to demonstrate the applicability of the theoretical result.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究一类由Rosenblatt过程驱动的具有无限时滞的分数阶脉冲中立型泛函微分方程。利用不动点理论,建立了新的温和解存在的一组充分条件。最后,通过实例说明了理论结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional neutral functional differential equations driven by the Rosenblatt process with an infinite delay
Abstract This paper concerns a class of fractional impulsive neutral functional differential equations with an infinite delay driven by the Rosenblatt process. A set of sufficient conditions are established for the existence of new mild solutions using fixed point theory. Finally, an illustrative example is provided to demonstrate the applicability of the theoretical result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信