实纯四次数域K= π (pd24)的2秩

IF 0.7 4区 数学 Q2 MATHEMATICS
Mbarek Haynou, B. Sodaïgui, M. Taous
{"title":"实纯四次数域K= π (pd24)的2秩","authors":"Mbarek Haynou, B. Sodaïgui, M. Taous","doi":"10.1216/rmj.2023.53.27","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the real pure quartic number field K = Q ( 4 (cid:112) pd 2 ) , where p is a prime number and d is a square-free positive integer such that d is prime to p . We compute r 2 ( K ) the 2 -rank of the class group of K and as an application we exhibit all possible forms of d for which the 2 -class group of K is trivial (equivalently: the class number of K is odd), cyclic or isomorphic to Z / 2 n 1 Z × Z / 2 n 2 Z , where n i ∈ N ∗ .","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE 2-RANK OF THE REAL PURE QUARTIC NUMBER FIELD K=ℚ(pd24)\",\"authors\":\"Mbarek Haynou, B. Sodaïgui, M. Taous\",\"doi\":\"10.1216/rmj.2023.53.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider the real pure quartic number field K = Q ( 4 (cid:112) pd 2 ) , where p is a prime number and d is a square-free positive integer such that d is prime to p . We compute r 2 ( K ) the 2 -rank of the class group of K and as an application we exhibit all possible forms of d for which the 2 -class group of K is trivial (equivalently: the class number of K is odd), cyclic or isomorphic to Z / 2 n 1 Z × Z / 2 n 2 Z , where n i ∈ N ∗ .\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.27\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.27","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。本文考虑了实纯四次数域K = Q (4 (cid:112) pd2),其中p是素数,d是无平方正整数,使得d对p是素数。我们计算r 2 (K)为K的类群的2秩,并作为一个应用,我们展示了d的所有可能形式,其中K的2类群是平凡的(等价地:K的类数是奇数),循环或同构于Z / 2n1z × Z / 2n2z,其中n i∈n∗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE 2-RANK OF THE REAL PURE QUARTIC NUMBER FIELD K=ℚ(pd24)
. In this paper, we consider the real pure quartic number field K = Q ( 4 (cid:112) pd 2 ) , where p is a prime number and d is a square-free positive integer such that d is prime to p . We compute r 2 ( K ) the 2 -rank of the class group of K and as an application we exhibit all possible forms of d for which the 2 -class group of K is trivial (equivalently: the class number of K is odd), cyclic or isomorphic to Z / 2 n 1 Z × Z / 2 n 2 Z , where n i ∈ N ∗ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信