稳定过程(SME)空间极值最大成本下的极值特征预测

Hasbi Yasin, Budi Warsito, Arief Rachman Hakim
{"title":"稳定过程(SME)空间极值最大成本下的极值特征预测","authors":"Hasbi Yasin, Budi Warsito, Arief Rachman Hakim","doi":"10.14710/MEDSTAT.12.1.39-49","DOIUrl":null,"url":null,"abstract":"This research covers Spatial Extreme Value method application with Max-Stable Process (MSP) approach that will be used to analysis Extreme Rainfall in Semarang city. Extreme value sample are selected by Block Maxima methods, it will be estimated into Spatial Extreme Value form by including location factors. Then it transform to Frechet distribution because it has a heavy tail pattern. Max Stable Process (MSP) is an extension of the multivariate extreme value distribution into infinite dimension of the Extreme Value Theory. After the best model of extreme rainfall data in Semarang is obtained, then calculated the prediction of extreme rainfall with a certain time period. Predictions are calculated using a return level, predictions of extreme rainfall using the return period of the next two years, at the Semarang City Climatology Station predicted to be a maximum of 100.7539 mm. At the Tanjung Mas Rain Monitoring Station it is predicted that a maximum of 100.1052 mm, Ahmad Yani Rain Monitoring Station is predicted to be a maximum of 109.9379 mm. Maximum prediction of extreme rainfall can also be calculated for future t (time) periods.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/MEDSTAT.12.1.39-49","citationCount":"4","resultStr":"{\"title\":\"PREDIKSI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN SPATIAL EXTREME VALUE DENGAN PENDEKATAN MAX STABLE PROCESS (MSP)\",\"authors\":\"Hasbi Yasin, Budi Warsito, Arief Rachman Hakim\",\"doi\":\"10.14710/MEDSTAT.12.1.39-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research covers Spatial Extreme Value method application with Max-Stable Process (MSP) approach that will be used to analysis Extreme Rainfall in Semarang city. Extreme value sample are selected by Block Maxima methods, it will be estimated into Spatial Extreme Value form by including location factors. Then it transform to Frechet distribution because it has a heavy tail pattern. Max Stable Process (MSP) is an extension of the multivariate extreme value distribution into infinite dimension of the Extreme Value Theory. After the best model of extreme rainfall data in Semarang is obtained, then calculated the prediction of extreme rainfall with a certain time period. Predictions are calculated using a return level, predictions of extreme rainfall using the return period of the next two years, at the Semarang City Climatology Station predicted to be a maximum of 100.7539 mm. At the Tanjung Mas Rain Monitoring Station it is predicted that a maximum of 100.1052 mm, Ahmad Yani Rain Monitoring Station is predicted to be a maximum of 109.9379 mm. Maximum prediction of extreme rainfall can also be calculated for future t (time) periods.\",\"PeriodicalId\":34146,\"journal\":{\"name\":\"Media Statistika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.14710/MEDSTAT.12.1.39-49\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/MEDSTAT.12.1.39-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/MEDSTAT.12.1.39-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究涵盖了空间极值方法与最大稳定过程(MSP)方法的应用,该方法将用于分析三宝垄市的极端降雨量。极值样本采用块极大值法选取,通过包含位置因子将其估计为空间极值形式。然后它转换为Frechet分布,因为它有一个沉重的尾部模式。最大稳定过程(MSP)是极值理论中多元极值分布向无穷维的扩展。在得到三宝垄极端降雨数据的最佳模型后,计算出一定时间段内的极端降雨预测值。三宝垄市气象站预测的最大降雨量为100.7539毫米。丹戎马斯雨水监测站预测的最高降雨量为100.1052毫米,Ahmad Yani雨水监测站的最高降雨量预计为109.9379毫米。还可以计算未来t(时间)段的极端降雨量的最大预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDIKSI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN SPATIAL EXTREME VALUE DENGAN PENDEKATAN MAX STABLE PROCESS (MSP)
This research covers Spatial Extreme Value method application with Max-Stable Process (MSP) approach that will be used to analysis Extreme Rainfall in Semarang city. Extreme value sample are selected by Block Maxima methods, it will be estimated into Spatial Extreme Value form by including location factors. Then it transform to Frechet distribution because it has a heavy tail pattern. Max Stable Process (MSP) is an extension of the multivariate extreme value distribution into infinite dimension of the Extreme Value Theory. After the best model of extreme rainfall data in Semarang is obtained, then calculated the prediction of extreme rainfall with a certain time period. Predictions are calculated using a return level, predictions of extreme rainfall using the return period of the next two years, at the Semarang City Climatology Station predicted to be a maximum of 100.7539 mm. At the Tanjung Mas Rain Monitoring Station it is predicted that a maximum of 100.1052 mm, Ahmad Yani Rain Monitoring Station is predicted to be a maximum of 109.9379 mm. Maximum prediction of extreme rainfall can also be calculated for future t (time) periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信