{"title":"可调谐的0−π量子比特:动力学和弛豫","authors":"G. Rajpoot, K. Kumari, S. Joshi, S. Jain","doi":"10.1142/s0219749921500325","DOIUrl":null,"url":null,"abstract":"In this paper, we present a systematic treatment of a [Formula: see text] qubit in the presence of a time-dependent external flux. A gauge-invariant Lagrangian and the corresponding Hamiltonian are obtained. The effect of the flux noise on the qubit relaxation is obtained using the perturbation theory. Under a time-dependent drive of sinusoidal form, the survival probability, and transition probabilities have been studied for different strengths and frequencies. The driven qubit is shown to possess coherent oscillations among two distinct states for a weak to moderate strength close to resonant frequencies of the unperturbed qubit. The parameters can be chosen to prepare the system in its ground state. This feature paves the way to prolong the lifetime by combining ideas from weak measurement and quantum Zeno effect. We believe that this is an important variation of a topologically protected qubit which is tunable.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The tunable 0−π qubit: Dynamics and relaxation\",\"authors\":\"G. Rajpoot, K. Kumari, S. Joshi, S. Jain\",\"doi\":\"10.1142/s0219749921500325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a systematic treatment of a [Formula: see text] qubit in the presence of a time-dependent external flux. A gauge-invariant Lagrangian and the corresponding Hamiltonian are obtained. The effect of the flux noise on the qubit relaxation is obtained using the perturbation theory. Under a time-dependent drive of sinusoidal form, the survival probability, and transition probabilities have been studied for different strengths and frequencies. The driven qubit is shown to possess coherent oscillations among two distinct states for a weak to moderate strength close to resonant frequencies of the unperturbed qubit. The parameters can be chosen to prepare the system in its ground state. This feature paves the way to prolong the lifetime by combining ideas from weak measurement and quantum Zeno effect. We believe that this is an important variation of a topologically protected qubit which is tunable.\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749921500325\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749921500325","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
In this paper, we present a systematic treatment of a [Formula: see text] qubit in the presence of a time-dependent external flux. A gauge-invariant Lagrangian and the corresponding Hamiltonian are obtained. The effect of the flux noise on the qubit relaxation is obtained using the perturbation theory. Under a time-dependent drive of sinusoidal form, the survival probability, and transition probabilities have been studied for different strengths and frequencies. The driven qubit is shown to possess coherent oscillations among two distinct states for a weak to moderate strength close to resonant frequencies of the unperturbed qubit. The parameters can be chosen to prepare the system in its ground state. This feature paves the way to prolong the lifetime by combining ideas from weak measurement and quantum Zeno effect. We believe that this is an important variation of a topologically protected qubit which is tunable.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.