SDRE控制问题的数值解法——几种方法的比较

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Krzysztof Hałas, Eugeniusz Krysiak, Tomasz Hałas, S. Stępień
{"title":"SDRE控制问题的数值解法——几种方法的比较","authors":"Krzysztof Hałas, Eugeniusz Krysiak, Tomasz Hałas, S. Stępień","doi":"10.2478/fcds-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract Methods for solving non-linear control systems are still being developed. For many industrial devices and systems, quick and accurate regulators are investigated and required. The most effective and promising for nonlinear systems control is a State-Dependent Riccati Equation method (SDRE). In SDRE, the problem consists of finding the suboptimal solution for a given objective function considering nonlinear constraints. For this purpose, SDRE methods need improvement. In this paper, various numerical methods for solving the SDRE problem, i.e. algebraic Riccati equation, are discussed and tested. The time of computation and computational effort is presented and compared considering selected nonlinear control plants.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"45 1","pages":"79 - 95"},"PeriodicalIF":1.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of SDRE Control Problem – Comparison of the Selected Methods\",\"authors\":\"Krzysztof Hałas, Eugeniusz Krysiak, Tomasz Hałas, S. Stępień\",\"doi\":\"10.2478/fcds-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Methods for solving non-linear control systems are still being developed. For many industrial devices and systems, quick and accurate regulators are investigated and required. The most effective and promising for nonlinear systems control is a State-Dependent Riccati Equation method (SDRE). In SDRE, the problem consists of finding the suboptimal solution for a given objective function considering nonlinear constraints. For this purpose, SDRE methods need improvement. In this paper, various numerical methods for solving the SDRE problem, i.e. algebraic Riccati equation, are discussed and tested. The time of computation and computational effort is presented and compared considering selected nonlinear control plants.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"45 1\",\"pages\":\"79 - 95\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

求解非线性控制系统的方法仍在开发中。对于许多工业设备和系统,需要快速准确的调节器。对于非线性系统控制,最有效和最有前途的是状态相关Riccati方程方法(SDRE)。在SDRE中,问题包括在考虑非线性约束的情况下为给定目标函数寻找次优解。为此,SDRE方法需要改进。本文讨论并测试了求解SDRE问题的各种数值方法,即代数Riccati方程。给出了计算时间和计算工作量,并在考虑所选非线性控制对象的情况下进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution of SDRE Control Problem – Comparison of the Selected Methods
Abstract Methods for solving non-linear control systems are still being developed. For many industrial devices and systems, quick and accurate regulators are investigated and required. The most effective and promising for nonlinear systems control is a State-Dependent Riccati Equation method (SDRE). In SDRE, the problem consists of finding the suboptimal solution for a given objective function considering nonlinear constraints. For this purpose, SDRE methods need improvement. In this paper, various numerical methods for solving the SDRE problem, i.e. algebraic Riccati equation, are discussed and tested. The time of computation and computational effort is presented and compared considering selected nonlinear control plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信