Zhichun Jia, Guang-Jun Guo, Yamin Du, X. Fan, D. Xie, Yanxia Wei, Jian-Ning Zhu, Ji Zhang, Xin-Guo Zhang
{"title":"甘草内生芽孢杆菌纤维素酶及其在甘草酸提取中的应用","authors":"Zhichun Jia, Guang-Jun Guo, Yamin Du, X. Fan, D. Xie, Yanxia Wei, Jian-Ning Zhu, Ji Zhang, Xin-Guo Zhang","doi":"10.35812/cellulosechemtechnol.2022.56.87","DOIUrl":null,"url":null,"abstract":"Glycyrrhizic acid is the main component of the medicinal plant Glycyrrhiza uralensis Fisch. It is widely used as a sweetener and an effective active ingredient with multiple physiological functions. Endophytes are microorganisms that coexist with plants and can produce cellulase. This cellulase enzyme can be used to overcome dissolution barriers of plant active ingredients by degrading plant cell wall. In the present study, a cellulase-producing strain with high cellulase activity was isolated from fresh Glycyrrhiza uralensis Fisch, and identified using the Congo red staining method and the DNS method. Glycyrrhizic acid yield was determined by the HPLC method. A highly reactive cellulase-producing strain, with a high extraction capacity of glycyrrhizic acid, was obtained. The strain was named GG-3, and bioinformatic analysis showed that it was a Bacillus sp. Findings obtained after optimization of the enzyme production and glycyrrhizic acid extraction process showed that glycyrrhizic acid yield increased by 32.52% and 31.35% after extraction with GG-3 enzyme, compared with the use of the traditional extraction method and commercial cellulase extraction method, respectively.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CELLULASE OF ENDOPHYTIC Bacillus SP. FROM Glycyrrhiza uralensis F. AND ITS APPLICATION FOR EXTRACTION OF GLYCYRRHIZIC ACID\",\"authors\":\"Zhichun Jia, Guang-Jun Guo, Yamin Du, X. Fan, D. Xie, Yanxia Wei, Jian-Ning Zhu, Ji Zhang, Xin-Guo Zhang\",\"doi\":\"10.35812/cellulosechemtechnol.2022.56.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycyrrhizic acid is the main component of the medicinal plant Glycyrrhiza uralensis Fisch. It is widely used as a sweetener and an effective active ingredient with multiple physiological functions. Endophytes are microorganisms that coexist with plants and can produce cellulase. This cellulase enzyme can be used to overcome dissolution barriers of plant active ingredients by degrading plant cell wall. In the present study, a cellulase-producing strain with high cellulase activity was isolated from fresh Glycyrrhiza uralensis Fisch, and identified using the Congo red staining method and the DNS method. Glycyrrhizic acid yield was determined by the HPLC method. A highly reactive cellulase-producing strain, with a high extraction capacity of glycyrrhizic acid, was obtained. The strain was named GG-3, and bioinformatic analysis showed that it was a Bacillus sp. Findings obtained after optimization of the enzyme production and glycyrrhizic acid extraction process showed that glycyrrhizic acid yield increased by 32.52% and 31.35% after extraction with GG-3 enzyme, compared with the use of the traditional extraction method and commercial cellulase extraction method, respectively.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2022.56.87\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2022.56.87","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
CELLULASE OF ENDOPHYTIC Bacillus SP. FROM Glycyrrhiza uralensis F. AND ITS APPLICATION FOR EXTRACTION OF GLYCYRRHIZIC ACID
Glycyrrhizic acid is the main component of the medicinal plant Glycyrrhiza uralensis Fisch. It is widely used as a sweetener and an effective active ingredient with multiple physiological functions. Endophytes are microorganisms that coexist with plants and can produce cellulase. This cellulase enzyme can be used to overcome dissolution barriers of plant active ingredients by degrading plant cell wall. In the present study, a cellulase-producing strain with high cellulase activity was isolated from fresh Glycyrrhiza uralensis Fisch, and identified using the Congo red staining method and the DNS method. Glycyrrhizic acid yield was determined by the HPLC method. A highly reactive cellulase-producing strain, with a high extraction capacity of glycyrrhizic acid, was obtained. The strain was named GG-3, and bioinformatic analysis showed that it was a Bacillus sp. Findings obtained after optimization of the enzyme production and glycyrrhizic acid extraction process showed that glycyrrhizic acid yield increased by 32.52% and 31.35% after extraction with GG-3 enzyme, compared with the use of the traditional extraction method and commercial cellulase extraction method, respectively.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials