基于水平的动态面板模型估计

Q3 Mathematics
Gabriel Montes-Rojas, W. Sosa-Escudero, Federico Zincenko
{"title":"基于水平的动态面板模型估计","authors":"Gabriel Montes-Rojas, W. Sosa-Escudero, Federico Zincenko","doi":"10.1515/jem-2018-0015","DOIUrl":null,"url":null,"abstract":"Abstract This paper develops an alternative estimator for linear dynamic panel data models based on parameterizing the covariances between covariates and unobserved time-invariant effects. A GMM framework is used to derive an optimal estimator based on moment conditions in levels, with no efficiency loss compared to the classic alternatives like (Arellano, M., and S. Bond. 1991. “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” Review of Economic Studies 58 (2): 277–297), (Ahn, S. C., and P. Schmidt. 1995. “Efficient Estimation of Models for Dynamic Panel Data.” Journal of Econometrics 68 (1): 5–27) and (Ahn, S. C., and P. Schmidt. 1997. “Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation.” Journal of Econometrics 76: 309–321). Still, we show analytically and by Monte Carlo simulations that the new procedure leads to efficiency improvements for certain data generating processes. The framework also leads to a very simple test for unobserved effects.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2018-0015","citationCount":"1","resultStr":"{\"title\":\"Level-Based Estimation of Dynamic Panel Models\",\"authors\":\"Gabriel Montes-Rojas, W. Sosa-Escudero, Federico Zincenko\",\"doi\":\"10.1515/jem-2018-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper develops an alternative estimator for linear dynamic panel data models based on parameterizing the covariances between covariates and unobserved time-invariant effects. A GMM framework is used to derive an optimal estimator based on moment conditions in levels, with no efficiency loss compared to the classic alternatives like (Arellano, M., and S. Bond. 1991. “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” Review of Economic Studies 58 (2): 277–297), (Ahn, S. C., and P. Schmidt. 1995. “Efficient Estimation of Models for Dynamic Panel Data.” Journal of Econometrics 68 (1): 5–27) and (Ahn, S. C., and P. Schmidt. 1997. “Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation.” Journal of Econometrics 76: 309–321). Still, we show analytically and by Monte Carlo simulations that the new procedure leads to efficiency improvements for certain data generating processes. The framework also leads to a very simple test for unobserved effects.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2018-0015\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2018-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2018-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

基于协变量间协方差和未观测时不变效应的参数化,提出了一种线性动态面板数据模型的替代估计方法。GMM框架用于推导基于水平矩条件的最优估计器,与经典替代方案(如Arellano, M.和S. Bond. 1991)相比,没有效率损失。面板数据规范的若干检验:蒙特卡罗证据及其在就业方程中的应用。李建平,李建平。2007 .中国经济研究,第2期,第1 - 6页。动态面板数据模型的有效估计。李建平,李建平。2007 .中国经济发展的宏观调控[j] .经济研究,32(1):1 - 7。动态面板数据模型的有效估计:替代假设和简化估计。计量经济学报(英文版);尽管如此,我们通过分析和蒙特卡罗模拟表明,新程序导致某些数据生成过程的效率提高。该框架还可以对未观察到的效果进行非常简单的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level-Based Estimation of Dynamic Panel Models
Abstract This paper develops an alternative estimator for linear dynamic panel data models based on parameterizing the covariances between covariates and unobserved time-invariant effects. A GMM framework is used to derive an optimal estimator based on moment conditions in levels, with no efficiency loss compared to the classic alternatives like (Arellano, M., and S. Bond. 1991. “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” Review of Economic Studies 58 (2): 277–297), (Ahn, S. C., and P. Schmidt. 1995. “Efficient Estimation of Models for Dynamic Panel Data.” Journal of Econometrics 68 (1): 5–27) and (Ahn, S. C., and P. Schmidt. 1997. “Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation.” Journal of Econometrics 76: 309–321). Still, we show analytically and by Monte Carlo simulations that the new procedure leads to efficiency improvements for certain data generating processes. The framework also leads to a very simple test for unobserved effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信