V. G. Bondur, I. A. Garagash, M. B. Gokhberg, D. A. Alekseev
{"title":"预备震源侧翼位移异常的偏移:一个摆动模型","authors":"V. G. Bondur, I. A. Garagash, M. B. Gokhberg, D. A. Alekseev","doi":"10.1134/S106935132304002X","DOIUrl":null,"url":null,"abstract":"<div><div><p><b>Abstract</b>—The geomechanical modeling of the stress-strain dynamics before the 2019 <i>M</i> = 7.1 Ridgecrest earthquake, Southern California, revealed an alternating pattern of maximum displacement anomalies that develop around the ends of the future rupture, simulating the process of “swinging” in the epicentral zone of the earthquake. These results, together with the existing theoretical concepts of crustal block structure with block interaction, are used to build a “swing” geomechanical model based on the stick-slip phenomenon in a three-block configuration. The parameters of the model are related to the rheological properties of the Earth’s crust in the area of destruction of the bridging isthmus (a patch), which determines the source size of the seismic event.</p></div></div>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 4","pages":"510 - 521"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migration of Displacement Anomalies on the Flanks of a Preparing Earthquake Source: A Swing Model\",\"authors\":\"V. G. Bondur, I. A. Garagash, M. B. Gokhberg, D. A. Alekseev\",\"doi\":\"10.1134/S106935132304002X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p><b>Abstract</b>—The geomechanical modeling of the stress-strain dynamics before the 2019 <i>M</i> = 7.1 Ridgecrest earthquake, Southern California, revealed an alternating pattern of maximum displacement anomalies that develop around the ends of the future rupture, simulating the process of “swinging” in the epicentral zone of the earthquake. These results, together with the existing theoretical concepts of crustal block structure with block interaction, are used to build a “swing” geomechanical model based on the stick-slip phenomenon in a three-block configuration. The parameters of the model are related to the rheological properties of the Earth’s crust in the area of destruction of the bridging isthmus (a patch), which determines the source size of the seismic event.</p></div></div>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"59 4\",\"pages\":\"510 - 521\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106935132304002X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S106935132304002X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Migration of Displacement Anomalies on the Flanks of a Preparing Earthquake Source: A Swing Model
Abstract—The geomechanical modeling of the stress-strain dynamics before the 2019 M = 7.1 Ridgecrest earthquake, Southern California, revealed an alternating pattern of maximum displacement anomalies that develop around the ends of the future rupture, simulating the process of “swinging” in the epicentral zone of the earthquake. These results, together with the existing theoretical concepts of crustal block structure with block interaction, are used to build a “swing” geomechanical model based on the stick-slip phenomenon in a three-block configuration. The parameters of the model are related to the rheological properties of the Earth’s crust in the area of destruction of the bridging isthmus (a patch), which determines the source size of the seismic event.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.