{"title":"Banach空间中具有非局部条件的脉冲积分微分方程","authors":"Mouhamadou Alpha Diallo , Khalil Ezzinbi , Abdoulaye Séne","doi":"10.1016/j.trmi.2016.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we give sufficient conditions for the existence of a mild solution for some impulsive integro-differential equations in Banach spaces. We study the existence without assuming the Lipschitz condition on the nonlinear term <span><math><mi>f</mi></math></span>. The compactness on the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mtext>-</mtext><mi>s</mi><mi>e</mi><mi>m</mi><mi>i</mi><mi>g</mi><mi>r</mi><mi>o</mi><mi>u</mi><mi>p</mi><mspace></mspace><mspace></mspace><msub><mrow><mrow><mo>(</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> in a Banach space is not needed. We use Hausdorff’s measure of noncompactness, resolvent operators and Darbo’s fixed point Theorem to obtain the main result of this work.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 304-315"},"PeriodicalIF":0.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2016.12.002","citationCount":"4","resultStr":"{\"title\":\"Impulsive integro-differential equations with nonlocal conditions in Banach spaces\",\"authors\":\"Mouhamadou Alpha Diallo , Khalil Ezzinbi , Abdoulaye Séne\",\"doi\":\"10.1016/j.trmi.2016.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we give sufficient conditions for the existence of a mild solution for some impulsive integro-differential equations in Banach spaces. We study the existence without assuming the Lipschitz condition on the nonlinear term <span><math><mi>f</mi></math></span>. The compactness on the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mtext>-</mtext><mi>s</mi><mi>e</mi><mi>m</mi><mi>i</mi><mi>g</mi><mi>r</mi><mi>o</mi><mi>u</mi><mi>p</mi><mspace></mspace><mspace></mspace><msub><mrow><mrow><mo>(</mo><mi>T</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> in a Banach space is not needed. We use Hausdorff’s measure of noncompactness, resolvent operators and Darbo’s fixed point Theorem to obtain the main result of this work.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 3\",\"pages\":\"Pages 304-315\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2016.12.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216300320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216300320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Impulsive integro-differential equations with nonlocal conditions in Banach spaces
In this work, we give sufficient conditions for the existence of a mild solution for some impulsive integro-differential equations in Banach spaces. We study the existence without assuming the Lipschitz condition on the nonlinear term . The compactness on the in a Banach space is not needed. We use Hausdorff’s measure of noncompactness, resolvent operators and Darbo’s fixed point Theorem to obtain the main result of this work.