熵最优传输:几何和大偏差

IF 2.3 1区 数学 Q1 MATHEMATICS
Espen Bernton, Promit Ghosal, Marcel Nutz
{"title":"熵最优传输:几何和大偏差","authors":"Espen Bernton, Promit Ghosal, Marcel Nutz","doi":"10.1215/00127094-2022-0035","DOIUrl":null,"url":null,"abstract":"We study the convergence of entropically regularized optimal transport to optimal transport. The main result is concerned with the convergence of the associated optimizers and takes the form of a large deviations principle quantifying the local exponential convergence rate as the regularization parameter vanishes. The exact rate function is determined in a general setting and linked to the Kantorovich potential of optimal transport. Our arguments are based on the geometry of the optimizers and inspired by the use of c-cyclical monotonicity in classical transport theory. The results can also be phrased in terms of Schrödinger bridges.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Entropic optimal transport: Geometry and large deviations\",\"authors\":\"Espen Bernton, Promit Ghosal, Marcel Nutz\",\"doi\":\"10.1215/00127094-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the convergence of entropically regularized optimal transport to optimal transport. The main result is concerned with the convergence of the associated optimizers and takes the form of a large deviations principle quantifying the local exponential convergence rate as the regularization parameter vanishes. The exact rate function is determined in a general setting and linked to the Kantorovich potential of optimal transport. Our arguments are based on the geometry of the optimizers and inspired by the use of c-cyclical monotonicity in classical transport theory. The results can also be phrased in terms of Schrödinger bridges.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0035\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0035","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 38

摘要

我们研究了熵正则最优输运到最优输运的收敛性。主要结果涉及相关优化器的收敛性,并采用大偏差原理的形式,当正则化参数消失时,量化局部指数收敛率。精确的速率函数是在一般情况下确定的,并与最优运输的Kantorovich势能有关。我们的论点是基于优化器的几何结构,并受到经典传输理论中使用c循环单调性的启发。结果也可以用薛定谔桥来表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropic optimal transport: Geometry and large deviations
We study the convergence of entropically regularized optimal transport to optimal transport. The main result is concerned with the convergence of the associated optimizers and takes the form of a large deviations principle quantifying the local exponential convergence rate as the regularization parameter vanishes. The exact rate function is determined in a general setting and linked to the Kantorovich potential of optimal transport. Our arguments are based on the geometry of the optimizers and inspired by the use of c-cyclical monotonicity in classical transport theory. The results can also be phrased in terms of Schrödinger bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信