在通胀目标框架内预测印尼通胀:大规模模型有回报吗?

Q2 Economics, Econometrics and Finance
Solikin M. Juhro, B. N. Iyke
{"title":"在通胀目标框架内预测印尼通胀:大规模模型有回报吗?","authors":"Solikin M. Juhro, B. N. Iyke","doi":"10.21098/bemp.v22i4.1235","DOIUrl":null,"url":null,"abstract":"We examine the usefulness of large-scale inflation forecasting models in Indonesiawithin an inflation-targeting framework. Using a dynamic model averaging approachto address three issues the policymaker faces when forecasting inflation, namely,parameter, predictor, and model uncertainties, we show that large-scale modelshave significant payoffs. Our in-sample forecasts suggest that 60% of 15 exogenouspredictors significantly forecast inflation, given a posterior inclusion probability cut-offof approximately 50%. We show that nearly 87% of the predictors can forecast inflationif we lower the cut-off to approximately 40%. Our out-of-sample forecasts suggest thatlarge-scale inflation forecasting models have substantial forecasting power relative tosimple models of inflation persistence at longer horizons.","PeriodicalId":36737,"journal":{"name":"Buletin Ekonomi Moneter dan Perbankan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"FORECASTING INDONESIAN INFLATION WITHIN AN INFLATION-TARGETING FRAMEWORK: DO LARGE-SCALE MODELS PAY OFF?\",\"authors\":\"Solikin M. Juhro, B. N. Iyke\",\"doi\":\"10.21098/bemp.v22i4.1235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the usefulness of large-scale inflation forecasting models in Indonesiawithin an inflation-targeting framework. Using a dynamic model averaging approachto address three issues the policymaker faces when forecasting inflation, namely,parameter, predictor, and model uncertainties, we show that large-scale modelshave significant payoffs. Our in-sample forecasts suggest that 60% of 15 exogenouspredictors significantly forecast inflation, given a posterior inclusion probability cut-offof approximately 50%. We show that nearly 87% of the predictors can forecast inflationif we lower the cut-off to approximately 40%. Our out-of-sample forecasts suggest thatlarge-scale inflation forecasting models have substantial forecasting power relative tosimple models of inflation persistence at longer horizons.\",\"PeriodicalId\":36737,\"journal\":{\"name\":\"Buletin Ekonomi Moneter dan Perbankan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletin Ekonomi Moneter dan Perbankan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21098/bemp.v22i4.1235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Ekonomi Moneter dan Perbankan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21098/bemp.v22i4.1235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 8

摘要

我们在通胀目标框架内研究了印尼大规模通胀预测模型的有用性。使用动态模型平均方法来解决决策者在预测通货膨胀时面临的三个问题,即参数、预测因子和模型不确定性,我们表明大规模模型会带来显著的收益。我们的样本内预测表明,在后验纳入概率降低约50%的情况下,15个外基因预测因子中有60%显著预测通货膨胀。我们表明,如果我们将截止值降低到大约40%,那么近87%的预测因子可以预测通货膨胀。我们的样本外预测表明,相对于长期通胀持续性的简单模型,大规模通胀预测模型具有相当大的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FORECASTING INDONESIAN INFLATION WITHIN AN INFLATION-TARGETING FRAMEWORK: DO LARGE-SCALE MODELS PAY OFF?
We examine the usefulness of large-scale inflation forecasting models in Indonesiawithin an inflation-targeting framework. Using a dynamic model averaging approachto address three issues the policymaker faces when forecasting inflation, namely,parameter, predictor, and model uncertainties, we show that large-scale modelshave significant payoffs. Our in-sample forecasts suggest that 60% of 15 exogenouspredictors significantly forecast inflation, given a posterior inclusion probability cut-offof approximately 50%. We show that nearly 87% of the predictors can forecast inflationif we lower the cut-off to approximately 40%. Our out-of-sample forecasts suggest thatlarge-scale inflation forecasting models have substantial forecasting power relative tosimple models of inflation persistence at longer horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buletin Ekonomi Moneter dan Perbankan
Buletin Ekonomi Moneter dan Perbankan Economics, Econometrics and Finance-Finance
CiteScore
2.20
自引率
0.00%
发文量
1
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信