{"title":"良好特征域上例外李代数的极大子代数的分类","authors":"A. Premet, David I. Stewart","doi":"10.1090/JAMS/926","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an exceptional simple algebraic group over an algebraically closed field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and suppose that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p equals c h a r left-parenthesis k right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>char</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p={\\operatorname {char}}(k)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a good prime for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper we classify the maximal Lie subalgebras <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">m</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the Lie algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g equals upper L i e left-parenthesis upper G right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>Lie</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}=\\operatorname {Lie}(G)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Specifically, we show that either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m equals upper L i e left-parenthesis upper M right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">m</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mi>Lie</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {m}=\\operatorname {Lie}(M)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some maximal connected subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">m</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a maximal Witt subalgebra of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German m\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">m</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a maximal <italic>exotic semidirect product</italic>. The conjugacy classes of maximal connected subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are known thanks to the work of Seitz, Testerman, and Liebeck–Seitz. All maximal Witt subalgebras of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-conjugate and they occur when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper E 6\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">E</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mn>6</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {E}}_6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coincides with the Coxeter number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that there are two conjugacy classes of maximal exotic semidirect products in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German g\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {g}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, one in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and one in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"7\">\n <mml:semantics>\n <mml:mn>7</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and both occur when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a group of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper E 7\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">E</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {E}}_7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/926","citationCount":"10","resultStr":"{\"title\":\"Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic\",\"authors\":\"A. Premet, David I. Stewart\",\"doi\":\"10.1090/JAMS/926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an exceptional simple algebraic group over an algebraically closed field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and suppose that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p equals c h a r left-parenthesis k right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>char</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>k</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p={\\\\operatorname {char}}(k)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a good prime for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In this paper we classify the maximal Lie subalgebras <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German m\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">m</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the Lie algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g equals upper L i e left-parenthesis upper G right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>Lie</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>G</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}=\\\\operatorname {Lie}(G)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Specifically, we show that either <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German m equals upper L i e left-parenthesis upper M right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">m</mml:mi>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:mi>Lie</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>M</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {m}=\\\\operatorname {Lie}(M)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for some maximal connected subgroup <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\">\\n <mml:semantics>\\n <mml:mi>M</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German m\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">m</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a maximal Witt subalgebra of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German m\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">m</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a maximal <italic>exotic semidirect product</italic>. The conjugacy classes of maximal connected subgroups of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are known thanks to the work of Seitz, Testerman, and Liebeck–Seitz. All maximal Witt subalgebras of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-conjugate and they occur when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is not of type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper E 6\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">E</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mn>6</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {E}}_6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> coincides with the Coxeter number of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We show that there are two conjugacy classes of maximal exotic semidirect products in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"German g\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathfrak {g}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, one in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and one in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"7\\\">\\n <mml:semantics>\\n <mml:mn>7</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and both occur when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\">\\n <mml:semantics>\\n <mml:mi>G</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a group of type <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper E 7\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">E</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {E}}_7</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/926\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/926\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/926","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
Let GG be an exceptional simple algebraic group over an algebraically closed field kk and suppose that p=char(k)p={\operatorname {char}}(k) is a good prime for GG. In this paper we classify the maximal Lie subalgebras m\mathfrak {m} of the Lie algebra g=Lie(G)\mathfrak {g}=\operatorname {Lie}(G). Specifically, we show that either m=Lie(M)\mathfrak {m}=\operatorname {Lie}(M) for some maximal connected subgroup MM of GG, or m\mathfrak {m} is a maximal Witt subalgebra of g\mathfrak {g}, or m\mathfrak {m} is a maximal exotic semidirect product. The conjugacy classes of maximal connected subgroups of GG are known thanks to the work of Seitz, Testerman, and Liebeck–Seitz. All maximal Witt subalgebras of g\mathfrak {g} are GG-conjugate and they occur when GG is not of type E6{\mathrm {E}}_6 and p−1p-1 coincides with the Coxeter number of GG. We show that there are two conjugacy classes of maximal exotic semidirect products in g\mathfrak {g}, one in characteristic 55 and one in characteristic 77, and both occur when GG is a group of type E7{\mathrm {E}}_7.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.