Chun-Rong Jia, Lin Li, Shang-Jie Chen, Donal O’Regan
{"title":"Schrödinger-Bopp-Podolsky系统的多重解","authors":"Chun-Rong Jia, Lin Li, Shang-Jie Chen, Donal O’Regan","doi":"10.1515/gmj-2023-2058","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the existence and multiplicity of solutions for the Schrödinger–Bopp–Podolsky system { - Δ u + V ( x ) u + ϕ u = f ( u ) + λ | u | 4 u in ℝ 3 , - Δ ϕ + a 2 Δ 2 ϕ = 4 π u 2 in ℝ 3 , \\left\\{\\begin{aligned} \\displaystyle{-}\\Delta u+V(x)u+\\phi u&\\displaystyle=f(u% )+\\lambda|u|^{4}u&&\\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{3},\\\\ \\displaystyle{-}\\Delta\\phi+a^{2}\\Delta^{2}\\phi&\\displaystyle=4\\pi u^{2}&&% \\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{3},\\end{aligned}\\right. where x ∈ ℝ 3 {x\\in\\mathbb{R}^{3}} , a > 0 {a>0} , V ( x ) ∈ 𝒞 ( ℝ 3 , ℝ ) {V(x)\\in\\mathcal{C}(\\mathbb{R}^{3},\\mathbb{R})} . Using variational methods and the symmetric mountain pass theorem, we establish the existence of multiple solutions for this system.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of solutions for Schrödinger–Bopp–Podolsky systems\",\"authors\":\"Chun-Rong Jia, Lin Li, Shang-Jie Chen, Donal O’Regan\",\"doi\":\"10.1515/gmj-2023-2058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the existence and multiplicity of solutions for the Schrödinger–Bopp–Podolsky system { - Δ u + V ( x ) u + ϕ u = f ( u ) + λ | u | 4 u in ℝ 3 , - Δ ϕ + a 2 Δ 2 ϕ = 4 π u 2 in ℝ 3 , \\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{-}\\\\Delta u+V(x)u+\\\\phi u&\\\\displaystyle=f(u% )+\\\\lambda|u|^{4}u&&\\\\displaystyle\\\\phantom{}\\\\text{in }\\\\mathbb{R}^{3},\\\\\\\\ \\\\displaystyle{-}\\\\Delta\\\\phi+a^{2}\\\\Delta^{2}\\\\phi&\\\\displaystyle=4\\\\pi u^{2}&&% \\\\displaystyle\\\\phantom{}\\\\text{in }\\\\mathbb{R}^{3},\\\\end{aligned}\\\\right. where x ∈ ℝ 3 {x\\\\in\\\\mathbb{R}^{3}} , a > 0 {a>0} , V ( x ) ∈ 𝒞 ( ℝ 3 , ℝ ) {V(x)\\\\in\\\\mathcal{C}(\\\\mathbb{R}^{3},\\\\mathbb{R})} . Using variational methods and the symmetric mountain pass theorem, we establish the existence of multiple solutions for this system.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2058\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究了Schrödinger-Bopp-Podolsky系统{- Δ _ u + V _ (x) _ u + φ _ u = f _ (u) + λ _ | u | 4 _ u在∑∈3中,- Δ _ φ + a 2 _ Δ 2 _ φ = 4 _ π _ u 2在∑∈3中,左\ \{{对齐}\ \开始displaystyle{-} \δu + V (x) u +φ\ u \ displaystyle = f (u %) + \ uλ| | ^ {4}u&& \ displaystyle \幻影{}\文本的{}\ mathbb {R} ^ {3}, \ \ \ displaystyle{-} \三角洲\φ+ ^{2}\三角洲^{2}\φ\ displaystyle = 4 \πu ^ {2} & & % \ displaystyle \幻影{}\文本的{}\ mathbb {R} ^{3},{对齐}\ \端。x∈ℝ3 {x \ \ mathbb {R} ^ {3}}, {0 >} > 0, V(x)∈𝒞(ℝℝ){V (x) \ \ mathcal {C} (\ mathbb {R} ^ {3}, \ mathbb {R})}。利用变分方法和对称山口定理,建立了该系统多重解的存在性。
Multiplicity of solutions for Schrödinger–Bopp–Podolsky systems
Abstract In this paper, we study the existence and multiplicity of solutions for the Schrödinger–Bopp–Podolsky system { - Δ u + V ( x ) u + ϕ u = f ( u ) + λ | u | 4 u in ℝ 3 , - Δ ϕ + a 2 Δ 2 ϕ = 4 π u 2 in ℝ 3 , \left\{\begin{aligned} \displaystyle{-}\Delta u+V(x)u+\phi u&\displaystyle=f(u% )+\lambda|u|^{4}u&&\displaystyle\phantom{}\text{in }\mathbb{R}^{3},\\ \displaystyle{-}\Delta\phi+a^{2}\Delta^{2}\phi&\displaystyle=4\pi u^{2}&&% \displaystyle\phantom{}\text{in }\mathbb{R}^{3},\end{aligned}\right. where x ∈ ℝ 3 {x\in\mathbb{R}^{3}} , a > 0 {a>0} , V ( x ) ∈ 𝒞 ( ℝ 3 , ℝ ) {V(x)\in\mathcal{C}(\mathbb{R}^{3},\mathbb{R})} . Using variational methods and the symmetric mountain pass theorem, we establish the existence of multiple solutions for this system.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.