Borel测度的分解 \(\mu \le \mathcal{H}^{s}\)

IF 0.1 Q4 MATHEMATICS
Antoine Detaille, A. Ponce
{"title":"Borel测度的分解 \\(\\mu \\le \\mathcal{H}^{s}\\)","authors":"Antoine Detaille, A. Ponce","doi":"10.14321/realanalexch.48.1.1629953964","DOIUrl":null,"url":null,"abstract":"We prove that every finite Borel measure $\\mu$ in $\\mathbb{R}^N$ that is bounded from above by the Hausdorff measure $\\mathcal{H}^s$ can be split in countable many parts $\\mu\\lfloor_{E_k}$ that are bounded from above by the Hausdorff content $\\mathcal{H}_\\infty^s$. Such a result generalises a theorem due to R. Delaware that says that any Borel set with finite Hausdorff measure can be decomposed as a countable disjoint union of straight sets. We also investigate the case where $\\mu$ is not necessarily finite.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decomposition for Borel Measures \\\\(\\\\mu \\\\le \\\\mathcal{H}^{s}\\\\)\",\"authors\":\"Antoine Detaille, A. Ponce\",\"doi\":\"10.14321/realanalexch.48.1.1629953964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every finite Borel measure $\\\\mu$ in $\\\\mathbb{R}^N$ that is bounded from above by the Hausdorff measure $\\\\mathcal{H}^s$ can be split in countable many parts $\\\\mu\\\\lfloor_{E_k}$ that are bounded from above by the Hausdorff content $\\\\mathcal{H}_\\\\infty^s$. Such a result generalises a theorem due to R. Delaware that says that any Borel set with finite Hausdorff measure can be decomposed as a countable disjoint union of straight sets. We also investigate the case where $\\\\mu$ is not necessarily finite.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.48.1.1629953964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.1.1629953964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了由Hausdorff测度$\mathcal{H}^s$从上界的$\mathbb{R}^N$中的每一个有限Borel测度$\mau$都可以分解为由Hausorff内容$\mathcal$从上边界的可数多个部分$\mau\lfloor_{E_k}${H}_\infty ^s$。这样的结果推广了R.Delaware的一个定理,该定理认为任何具有有限Hausdorff测度的Borel集都可以分解为直集的可数不相交并集。我们还研究了$\mu$不一定是有限的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decomposition for Borel Measures \(\mu \le \mathcal{H}^{s}\)
We prove that every finite Borel measure $\mu$ in $\mathbb{R}^N$ that is bounded from above by the Hausdorff measure $\mathcal{H}^s$ can be split in countable many parts $\mu\lfloor_{E_k}$ that are bounded from above by the Hausdorff content $\mathcal{H}_\infty^s$. Such a result generalises a theorem due to R. Delaware that says that any Borel set with finite Hausdorff measure can be decomposed as a countable disjoint union of straight sets. We also investigate the case where $\mu$ is not necessarily finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信