{"title":"实值突变下的离散动力系统","authors":"John M. Machacek, N. Ovenhouse","doi":"10.1080/10586458.2022.2065555","DOIUrl":null,"url":null,"abstract":"We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete Dynamical Systems From Real Valued Mutation\",\"authors\":\"John M. Machacek, N. Ovenhouse\",\"doi\":\"10.1080/10586458.2022.2065555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2022.2065555\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2065555","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Discrete Dynamical Systems From Real Valued Mutation
We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.
期刊介绍:
Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses.
Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results.
Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.