实值突变下的离散动力系统

IF 0.7 4区 数学 Q2 MATHEMATICS
John M. Machacek, N. Ovenhouse
{"title":"实值突变下的离散动力系统","authors":"John M. Machacek, N. Ovenhouse","doi":"10.1080/10586458.2022.2065555","DOIUrl":null,"url":null,"abstract":"We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete Dynamical Systems From Real Valued Mutation\",\"authors\":\"John M. Machacek, N. Ovenhouse\",\"doi\":\"10.1080/10586458.2022.2065555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.\",\"PeriodicalId\":50464,\"journal\":{\"name\":\"Experimental Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2022.2065555\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2065555","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一类离散动力系统,它包含并推广了二阶簇代数的突变动力学。这些系统表现出与可积性相关的行为,即保持辛形式,在热带情况下,存在一个守恒量。我们证明在某些情况下轨道是无界的。从簇代数理论出发,热带动力学与矩阵突变有关。我们能够证明,在某些特殊情况下,热带地图是周期性的。我们还解释了我们的动力学如何暗示Gekhtman和Nakanishi在$2$维情况下观察到的渐近符号相干性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Dynamical Systems From Real Valued Mutation
We introduce a family of discrete dynamical systems which includes, and generalizes, the mutation dynamics of rank two cluster algebras. These systems exhibit behavior associated with integrability, namely preservation of a symplectic form, and in the tropical case, the existence of a conserved quantity. We show in certain cases that the orbits are unbounded. The tropical dynamics are related to matrix mutation, from the theory of cluster algebras. We are able to show that in certain special cases, the tropical map is periodic. We also explain how our dynamics imply the asymptotic sign-coherence observed by Gekhtman and Nakanishi in the $2$-dimensional situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Mathematics
Experimental Mathematics 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses. Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results. Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信