曲面上$\mathbb{Q}$-因子的Sakai定理及其应用

IF 0.5 4区 数学 Q3 MATHEMATICS
Fei Ye, Tongde Zhang, Zhixian Zhu
{"title":"曲面上$\\mathbb{Q}$-因子的Sakai定理及其应用","authors":"Fei Ye, Tongde Zhang, Zhixian Zhu","doi":"10.4310/AJM.2018.V22.N4.A8","DOIUrl":null,"url":null,"abstract":"In this paper, we present a characterization of a big Q-divisor D on a smooth \nprojective surface S with D2 > 0 and H1(OS(−D)) = 0, which generalizes a result of Sakai \n[Sak90] for D integral. As applications of this result for Q-divisors, we prove results on base-pointfreeness and very-ampleness of the adjoint linear system |KS + D|. These results can be viewed as \nrefinements of previous results on smooth surfaces of Ein-Lazarsfeld [EL93] and Ma¸sek [Ma¸s99].","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sakai’s theorem for $\\\\mathbb{Q}$-divisors on surfaces and applications\",\"authors\":\"Fei Ye, Tongde Zhang, Zhixian Zhu\",\"doi\":\"10.4310/AJM.2018.V22.N4.A8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a characterization of a big Q-divisor D on a smooth \\nprojective surface S with D2 > 0 and H1(OS(−D)) = 0, which generalizes a result of Sakai \\n[Sak90] for D integral. As applications of this result for Q-divisors, we prove results on base-pointfreeness and very-ampleness of the adjoint linear system |KS + D|. These results can be viewed as \\nrefinements of previous results on smooth surfaces of Ein-Lazarsfeld [EL93] and Ma¸sek [Ma¸s99].\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/AJM.2018.V22.N4.A8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2018.V22.N4.A8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文推广了Sakai [Sak90]关于D积分的结果,给出了光滑投影曲面S上D2 > 0和H1(OS(−D)) = 0的大q因子D的刻画。作为这一结果在q -除数上的应用,我们证明了伴随线性系统|KS + D|的基点自由性和非常充裕性的结果。这些结果可以看作是对先前在Ein-Lazarsfeld [EL93]和Ma ø sek [Ma ø s99]光滑表面上的结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sakai’s theorem for $\mathbb{Q}$-divisors on surfaces and applications
In this paper, we present a characterization of a big Q-divisor D on a smooth projective surface S with D2 > 0 and H1(OS(−D)) = 0, which generalizes a result of Sakai [Sak90] for D integral. As applications of this result for Q-divisors, we prove results on base-pointfreeness and very-ampleness of the adjoint linear system |KS + D|. These results can be viewed as refinements of previous results on smooth surfaces of Ein-Lazarsfeld [EL93] and Ma¸sek [Ma¸s99].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信