负载型Cu-Ru催化剂在芳烃中痕量烯烃脱除中的应用

IF 1.1 4区 地球科学 Q4 CHEMISTRY, PHYSICAL
Clay Minerals Pub Date : 2022-06-01 DOI:10.1180/clm.2022.23
Xiao Liang, Naiwang Liu, Li Shi, Xuan Meng
{"title":"负载型Cu-Ru催化剂在芳烃中痕量烯烃脱除中的应用","authors":"Xiao Liang, Naiwang Liu, Li Shi, Xuan Meng","doi":"10.1180/clm.2022.23","DOIUrl":null,"url":null,"abstract":"Abstract Exploring reliable hydrogenation catalysts to remove trace olefins in aromatic hydrocarbons through hydrogenation is an important topic. In this paper, a bimetallic Cu–Ru/montmorillonite (Cu–Ru/M) catalyst was prepared using a step-by-step impregnation method, and the effects of bimetallic catalysts on removing olefins were assessed. The catalysts were characterized using X-ray diffraction, Brunauer–Emmett–Teller specific surface area, inductively coupled plasma atomic emission spectrometry, high-resolution transmission electron microscopy and temperature-programmed reduction of H2. The results show that there is a strong interaction between Cu and Ru on the Cu–Ru/M catalyst, which improves the dispersion of the metals on the surface of the support M. The hydrogen spillover phenomenon of Cu–Ru/M enhances its activity and adsorption capacity for hydrogen species. The catalytic performance test confirmed that the bimetallic catalyst has significantly greater activity and stability. The optimal loadings are 5% copper and 1% ruthenium, and the performance of this catalyst is comparable to those of noble-metal Pt/M catalysts.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of supported Cu–Ru catalysts for the removal of trace olefins in aromatics\",\"authors\":\"Xiao Liang, Naiwang Liu, Li Shi, Xuan Meng\",\"doi\":\"10.1180/clm.2022.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Exploring reliable hydrogenation catalysts to remove trace olefins in aromatic hydrocarbons through hydrogenation is an important topic. In this paper, a bimetallic Cu–Ru/montmorillonite (Cu–Ru/M) catalyst was prepared using a step-by-step impregnation method, and the effects of bimetallic catalysts on removing olefins were assessed. The catalysts were characterized using X-ray diffraction, Brunauer–Emmett–Teller specific surface area, inductively coupled plasma atomic emission spectrometry, high-resolution transmission electron microscopy and temperature-programmed reduction of H2. The results show that there is a strong interaction between Cu and Ru on the Cu–Ru/M catalyst, which improves the dispersion of the metals on the surface of the support M. The hydrogen spillover phenomenon of Cu–Ru/M enhances its activity and adsorption capacity for hydrogen species. The catalytic performance test confirmed that the bimetallic catalyst has significantly greater activity and stability. The optimal loadings are 5% copper and 1% ruthenium, and the performance of this catalyst is comparable to those of noble-metal Pt/M catalysts.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2022.23\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2022.23","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要探索可靠的加氢催化剂,通过加氢去除芳烃中的微量烯烃是一个重要的课题。本文采用分步浸渍法制备了双金属Cu–Ru/蒙脱土(Cu–Ru/M)催化剂,并评价了双金属催化剂对脱烯烃的影响。使用X射线衍射、Brunauer–Emmett–Teller比表面积、电感耦合等离子体原子发射光谱法、高分辨率透射电子显微镜和H2程序升温还原对催化剂进行了表征。结果表明,Cu–Ru/M催化剂上Cu和Ru之间存在较强的相互作用,改善了金属在载体M表面的分散性。Cu–Ru-M的氢溢出现象增强了其对氢物种的活性和吸附能力。催化性能测试证实,双金属催化剂具有显著更高的活性和稳定性。最佳负载量为5%的铜和1%的钌,该催化剂的性能与贵金属Pt/M催化剂的性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of supported Cu–Ru catalysts for the removal of trace olefins in aromatics
Abstract Exploring reliable hydrogenation catalysts to remove trace olefins in aromatic hydrocarbons through hydrogenation is an important topic. In this paper, a bimetallic Cu–Ru/montmorillonite (Cu–Ru/M) catalyst was prepared using a step-by-step impregnation method, and the effects of bimetallic catalysts on removing olefins were assessed. The catalysts were characterized using X-ray diffraction, Brunauer–Emmett–Teller specific surface area, inductively coupled plasma atomic emission spectrometry, high-resolution transmission electron microscopy and temperature-programmed reduction of H2. The results show that there is a strong interaction between Cu and Ru on the Cu–Ru/M catalyst, which improves the dispersion of the metals on the surface of the support M. The hydrogen spillover phenomenon of Cu–Ru/M enhances its activity and adsorption capacity for hydrogen species. The catalytic performance test confirmed that the bimetallic catalyst has significantly greater activity and stability. The optimal loadings are 5% copper and 1% ruthenium, and the performance of this catalyst is comparable to those of noble-metal Pt/M catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clay Minerals
Clay Minerals 地学-矿物学
CiteScore
3.00
自引率
20.00%
发文量
25
审稿时长
6 months
期刊介绍: Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信