关于对称点的函数的对数系数的尖锐界限问题

Q3 Mathematics
N. H. Mohammed
{"title":"关于对称点的函数的对数系数的尖锐界限问题","authors":"N. H. Mohammed","doi":"10.30970/ms.59.1.68-75","DOIUrl":null,"url":null,"abstract":"The logarithmic coefficients play an important role for different estimates in the theory of univalent functions.Due to the significance of the recent studies about the logarithmic coefficients, the problem of obtaining the sharp bounds for the second Hankel determinant of these coefficients, that is $H_{2,1}(F_f/2)$ was paid attention. We recall that if $f$ and $F$ are two analytic functions in $\\mathbb{D}$, the function $f$ is subordinate to $F$, written $f(z)\\prec F(z)$, if there exists an analytic function $\\omega$ in $\\mathbb{D}$ with $\\omega(0)=0$ and $|\\omega(z)|<1$, such that $f(z)=F\\left(\\omega(z)\\right)$ for all $z\\in\\mathbb{D}$. It is well-known that if $F$ is univalent in $\\mathbb{D}$, then $f(z)\\prec F(z)$ if and only if $f(0)=F(0)$ and $f(\\mathbb{D})\\subset F(\\mathbb{D})$.A function $f\\in\\mathcal{A}$ is starlike with respect to symmetric points in $\\mathbb{D}$ iffor every $r$ close to $1,$ $r < 1$ and every $z_0$ on $|z| = r$ the angular velocity of $f(z)$about $f(-z_0)$ is positive at $z = z_0$ as $z$ traverses the circle $|z| = r$ in the positivedirection. In the current study, we obtain the sharp bounds of the second Hankel determinant of the logarithmic coefficients for families $\\mathcal{S}_s^*(\\psi)$ and $\\mathcal{C}_s(\\psi)$ where were defined by the concept subordination and $\\psi$ is considered univalent in $\\mathbb{D}$ with positive real part in $\\mathbb{D}$ and satisfies the condition $\\psi(0)=1$. Note that $f\\in \\mathcal{S}_s^*(\\psi)$ if\\[\\dfrac{2zf^\\prime(z)}{f(z)-f(-z)}\\prec\\psi(z),\\quad z\\in\\mathbb{D}\\]and $f\\in \\mathcal{C}_s(\\psi)$ if\\[\\dfrac{2(zf^\\prime(z))^\\prime}{f^\\prime(z)+f^\\prime(-z)}\\prec\\psi(z),\\quad z\\in\\mathbb{D}.\\]It is worthwhile mentioning that the given bounds in this paper extend and develop some related recent results in the literature. In addition, the results given in these theorems can be used for determining the upper bound of $\\left\\vert H_{2,1}(F_f/2)\\right\\vert$ for other popular families.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points\",\"authors\":\"N. H. Mohammed\",\"doi\":\"10.30970/ms.59.1.68-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The logarithmic coefficients play an important role for different estimates in the theory of univalent functions.Due to the significance of the recent studies about the logarithmic coefficients, the problem of obtaining the sharp bounds for the second Hankel determinant of these coefficients, that is $H_{2,1}(F_f/2)$ was paid attention. We recall that if $f$ and $F$ are two analytic functions in $\\\\mathbb{D}$, the function $f$ is subordinate to $F$, written $f(z)\\\\prec F(z)$, if there exists an analytic function $\\\\omega$ in $\\\\mathbb{D}$ with $\\\\omega(0)=0$ and $|\\\\omega(z)|<1$, such that $f(z)=F\\\\left(\\\\omega(z)\\\\right)$ for all $z\\\\in\\\\mathbb{D}$. It is well-known that if $F$ is univalent in $\\\\mathbb{D}$, then $f(z)\\\\prec F(z)$ if and only if $f(0)=F(0)$ and $f(\\\\mathbb{D})\\\\subset F(\\\\mathbb{D})$.A function $f\\\\in\\\\mathcal{A}$ is starlike with respect to symmetric points in $\\\\mathbb{D}$ iffor every $r$ close to $1,$ $r < 1$ and every $z_0$ on $|z| = r$ the angular velocity of $f(z)$about $f(-z_0)$ is positive at $z = z_0$ as $z$ traverses the circle $|z| = r$ in the positivedirection. In the current study, we obtain the sharp bounds of the second Hankel determinant of the logarithmic coefficients for families $\\\\mathcal{S}_s^*(\\\\psi)$ and $\\\\mathcal{C}_s(\\\\psi)$ where were defined by the concept subordination and $\\\\psi$ is considered univalent in $\\\\mathbb{D}$ with positive real part in $\\\\mathbb{D}$ and satisfies the condition $\\\\psi(0)=1$. Note that $f\\\\in \\\\mathcal{S}_s^*(\\\\psi)$ if\\\\[\\\\dfrac{2zf^\\\\prime(z)}{f(z)-f(-z)}\\\\prec\\\\psi(z),\\\\quad z\\\\in\\\\mathbb{D}\\\\]and $f\\\\in \\\\mathcal{C}_s(\\\\psi)$ if\\\\[\\\\dfrac{2(zf^\\\\prime(z))^\\\\prime}{f^\\\\prime(z)+f^\\\\prime(-z)}\\\\prec\\\\psi(z),\\\\quad z\\\\in\\\\mathbb{D}.\\\\]It is worthwhile mentioning that the given bounds in this paper extend and develop some related recent results in the literature. In addition, the results given in these theorems can be used for determining the upper bound of $\\\\left\\\\vert H_{2,1}(F_f/2)\\\\right\\\\vert$ for other popular families.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.1.68-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.68-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

在一元函数理论中,对数系数对不同的估计起着重要的作用。由于近年来对数系数研究的重要性,这些系数的第二次汉克尔行列式的锐界问题,即 $H_{2,1}(F_f/2)$ 得到了关注。我们记得,如果 $f$ 和 $F$ 有两个解析函数吗 $\mathbb{D}$,函数 $f$ 从属于 $F$,写的 $f(z)\prec F(z)$,如果存在解析函数 $\omega$ 在 $\mathbb{D}$ 有 $\omega(0)=0$ 和 $|\omega(z)|<1$,这样 $f(z)=F\left(\omega(z)\right)$ 对所有人 $z\in\mathbb{D}$。众所周知, $F$ 是一元的 $\mathbb{D}$那么, $f(z)\prec F(z)$ 当且仅当 $f(0)=F(0)$ 和 $f(\mathbb{D})\subset F(\mathbb{D})$a函数 $f\in\mathcal{A}$ 对于对称点是星形的吗 $\mathbb{D}$ 如果每 $r$ 接近于 $1,$ $r < 1$ 每一个 $z_0$ on $|z| = r$ 的角速度 $f(z)$关于 $f(-z_0)$ 是正的 $z = z_0$ as $z$ 穿过圆 $|z| = r$ 朝积极的方向。在目前的研究中,我们得到了对数系数的第二汉克尔行列式的锐界 $\mathcal{S}_s^*(\psi)$ 和 $\mathcal{C}_s(\psi)$ 我们在哪里定义了从属和从属的概念 $\psi$ 被认为是单价的 $\mathbb{D}$ 实部为正 $\mathbb{D}$ 并且满足条件 $\psi(0)=1$。请注意 $f\in \mathcal{S}_s^*(\psi)$ 如果\[\dfrac{2zf^\prime(z)}{f(z)-f(-z)}\prec\psi(z),\quad z\in\mathbb{D}\]和 $f\in \mathcal{C}_s(\psi)$ 如果\[\dfrac{2(zf^\prime(z))^\prime}{f^\prime(z)+f^\prime(-z)}\prec\psi(z),\quad z\in\mathbb{D}.\]值得一提的是,本文给出的边界扩展和发展了文献中最近的一些相关结果。此外,这些定理所给出的结果可用于确定的上界 $\left\vert H_{2,1}(F_f/2)\right\vert$ 其他受欢迎的家庭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points
The logarithmic coefficients play an important role for different estimates in the theory of univalent functions.Due to the significance of the recent studies about the logarithmic coefficients, the problem of obtaining the sharp bounds for the second Hankel determinant of these coefficients, that is $H_{2,1}(F_f/2)$ was paid attention. We recall that if $f$ and $F$ are two analytic functions in $\mathbb{D}$, the function $f$ is subordinate to $F$, written $f(z)\prec F(z)$, if there exists an analytic function $\omega$ in $\mathbb{D}$ with $\omega(0)=0$ and $|\omega(z)|<1$, such that $f(z)=F\left(\omega(z)\right)$ for all $z\in\mathbb{D}$. It is well-known that if $F$ is univalent in $\mathbb{D}$, then $f(z)\prec F(z)$ if and only if $f(0)=F(0)$ and $f(\mathbb{D})\subset F(\mathbb{D})$.A function $f\in\mathcal{A}$ is starlike with respect to symmetric points in $\mathbb{D}$ iffor every $r$ close to $1,$ $r < 1$ and every $z_0$ on $|z| = r$ the angular velocity of $f(z)$about $f(-z_0)$ is positive at $z = z_0$ as $z$ traverses the circle $|z| = r$ in the positivedirection. In the current study, we obtain the sharp bounds of the second Hankel determinant of the logarithmic coefficients for families $\mathcal{S}_s^*(\psi)$ and $\mathcal{C}_s(\psi)$ where were defined by the concept subordination and $\psi$ is considered univalent in $\mathbb{D}$ with positive real part in $\mathbb{D}$ and satisfies the condition $\psi(0)=1$. Note that $f\in \mathcal{S}_s^*(\psi)$ if\[\dfrac{2zf^\prime(z)}{f(z)-f(-z)}\prec\psi(z),\quad z\in\mathbb{D}\]and $f\in \mathcal{C}_s(\psi)$ if\[\dfrac{2(zf^\prime(z))^\prime}{f^\prime(z)+f^\prime(-z)}\prec\psi(z),\quad z\in\mathbb{D}.\]It is worthwhile mentioning that the given bounds in this paper extend and develop some related recent results in the literature. In addition, the results given in these theorems can be used for determining the upper bound of $\left\vert H_{2,1}(F_f/2)\right\vert$ for other popular families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信