施拉姆空间和复合运算符

IF 0.8 Q2 MATHEMATICS
Małgorzata Wróbel
{"title":"施拉姆空间和复合运算符","authors":"Małgorzata Wróbel","doi":"10.17512/jamcm.2023.2.08","DOIUrl":null,"url":null,"abstract":". We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Schramm spaces and composition operators\",\"authors\":\"Małgorzata Wróbel\",\"doi\":\"10.17512/jamcm.2023.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2023.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2023.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给出了Schramm函数的一些性质;证明了在实区间I上定义的所有连续分段线性函数族都包含在Schramm意义上的有界变差函数的空间ΦBV(I)中。此外,我们还证明了相应的Nemytskij复合算子在有界Schramm变分的连续函数的Banach空间CΦBV(I)之间作用的生成函数必须是连续的,并且还证明了空间CΦBVI具有Matkowski性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schramm spaces and composition operators
. We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信