{"title":"施拉姆空间和复合运算符","authors":"Małgorzata Wróbel","doi":"10.17512/jamcm.2023.2.08","DOIUrl":null,"url":null,"abstract":". We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Schramm spaces and composition operators\",\"authors\":\"Małgorzata Wróbel\",\"doi\":\"10.17512/jamcm.2023.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2023.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2023.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
. We give some properties of Schramm functions; among others, we prove that the family of all continuous piecewise linear functions defined on a real interval I is contained in the space Φ BV ( I ) of functions of bounded variation in the sense of Schramm. Moreover, we show that the generating function of the corresponding Nemytskij composition operator acting between Banach spaces C Φ BV ( I ) of continuous functions of bounded Schramm variation has to be continuous and additionally we show that a space C Φ BV ( I ) has the Matkowski property.