关于$\mathbb{P}^2$上的两个向量束的不变秩

Pub Date : 2020-10-13 DOI:10.5565/publmat6712306
Simone Marchesi, J. Vallès
{"title":"关于$\\mathbb{P}^2$上的两个向量束的不变秩","authors":"Simone Marchesi, J. Vallès","doi":"10.5565/publmat6712306","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the rank two vector bundles on P 2 which are invariant under the action of Gp := Stabp(PGL(3)), that fixes a point in the projective plane, GL := StabL(PGL(3)), that fixes a line, and T = Gp ∩ GL. Moreover, we prove that the geometrical configuration of the jumping locus induced by the invariance does not, on the other hand, characterize the invariance itself. Indeed, we find infinity families that are almost uniform but not almost homogeneous.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On invariant rank two vector bundles on $\\\\mathbb{P}^2$\",\"authors\":\"Simone Marchesi, J. Vallès\",\"doi\":\"10.5565/publmat6712306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the rank two vector bundles on P 2 which are invariant under the action of Gp := Stabp(PGL(3)), that fixes a point in the projective plane, GL := StabL(PGL(3)), that fixes a line, and T = Gp ∩ GL. Moreover, we prove that the geometrical configuration of the jumping locus induced by the invariance does not, on the other hand, characterize the invariance itself. Indeed, we find infinity families that are almost uniform but not almost homogeneous.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6712306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6712306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文刻画了在投影平面上固定点的Gp:= Stabp(PGL(3))、固定直线的GL:= StabL(PGL(3))和T = Gp∩GL作用下p2上的两个秩向量束的不变性,并且证明了由不变性引起的跳跃轨迹的几何构型并不表征不变性本身。事实上,我们发现有无限个族几乎是均匀的,但不是均匀的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On invariant rank two vector bundles on $\mathbb{P}^2$
In this paper we characterize the rank two vector bundles on P 2 which are invariant under the action of Gp := Stabp(PGL(3)), that fixes a point in the projective plane, GL := StabL(PGL(3)), that fixes a line, and T = Gp ∩ GL. Moreover, we prove that the geometrical configuration of the jumping locus induced by the invariance does not, on the other hand, characterize the invariance itself. Indeed, we find infinity families that are almost uniform but not almost homogeneous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信